DOI QR코드

DOI QR Code

Strategies of A Potential Importance, Making Lead-Free Piezoceramics Truly Alternative to PZTs

  • Kim, Hwang-Pill (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Ahn, Chang Won (Department of Physics, University of Ulsan) ;
  • Hwang, Younghun (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Lee, Ho-Yong (Department of Materials Science and Engineering, Sunmoon University) ;
  • Jo, Wook (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2017.02.27
  • Accepted : 2017.03.06
  • Published : 2017.03.31

Abstract

Active search for lead-free piezoceramics over the last decade has harvested a considerable amount of achievements both in theory and in practice. Few would deny that those achievements are highly beneficial, but agree that this quest of developing the lead-free piezoceramics in replace for PZTs is successfully completed. Nevertheless, few would clearly state where this quest should be directed in our next move. A source of this uncertainty may originate from the fact that it is still not clear how good is good enough to beat PZTs. In this short review, we analyzed the existing literature data to clearly locate the current state of the art of lead-free piezoceramics in comparison to PZT-based piezoceramics. Four strategies of a potential importance were suggested and discussed to help researchers plan and design their future research on lead-free piezoceramics with a recently reported exemplary work.

Keywords

References

  1. G. H. Haertling, "Ferroelectric Ceramics: History and Technology," J. Am. Ceram. Soc., 82 [4] 797-818 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01840.x
  2. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rodel, "Giant Electric-Field-Induced Strains in Lead-Free Piezoceramics for Actuator Applications - Status and Perspective," J. Electroceram., 29 [1] 71-93 (2012). https://doi.org/10.1007/s10832-012-9742-3
  3. C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J. S. Son, C. W. Ahn, and W. Jo, "Lead-Free Piezoceramics - Where to Move On?," J. Materiomics, 2 [1] 1-24 (2016). https://doi.org/10.1016/j.jmat.2015.12.002
  4. L. E. Cross, "Materials Science: Lead-Free at Last," Nature, 432 [7013] 24-25 (2004). https://doi.org/10.1038/nature03142
  5. T. R. Shrout and S. J. Zhang, "Lead-Free Piezoelectric Ceramics: Alternatives for PZT?," J. Electroceram., 19 [1] 113-26 (2007). https://doi.org/10.1007/s10832-007-9047-0
  6. T. Takenaka, H. Nagata, and Y. Hiruma, "Current Developments and Prospective of Lead-Free Piezoelectric Ceramics," Jpn. J. Appl. Phys., 47 [5] 3787-801 (2008). https://doi.org/10.1143/JJAP.47.3787
  7. P. K. Panda, "Review: Environmental Friendly Lead-Free Piezoelectric Materials," J. Mater. Sci., 44 [19] 5049-62 (2009). https://doi.org/10.1007/s10853-009-3643-0
  8. J. Rodel, W. Jo, K. T. P. Seifert, E.-M. Anton, T. Granzow, and D. Damjanovic, "Perspective on the Development of Lead-Free Piezoceramics," J. Am. Ceram. Soc., 92 [6] 1153- 77 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
  9. D. Damjanovic, N. Klein, J. Li, and V. Porokhonskyy, "What Can Be Expected from Lead-Free Piezoelectric Materials?," Funct. Mater. Lett., 3 [1] 5-13 (2010). https://doi.org/10.1142/S1793604710000919
  10. R.-A. Eichel and H. Kungl, "Recent Developments and Future Perspectives of Lead-Free Ferroelectrics," Funct. Mater. Lett., 03 [01] 1-4 (2010). https://doi.org/10.1142/S179360471000097X
  11. E. Aksel and J. L. Jones, "Advances in Lead-Free Piezoelectric Materials for Sensors and Actuators," Sensors (Basel), 10 [3] 1935-54 (2010). https://doi.org/10.3390/s100301935
  12. I. Coondoo, N. Panwar, and A. Kholkin, "Lead-Free Piezoelectrics: Current Status and Perspectives," J. Adv. Dielectrics, 3 [02] 1330002 (2013). https://doi.org/10.1142/S2010135X13300028
  13. J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng, F.-Z. Yao, and D. J. Green, "(K,Na)$NbO_3$-Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges," J. Am. Ceram. Soc., 96 [12] 3677-96 (2013). https://doi.org/10.1111/jace.12715
  14. J. Rodel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, "Transferring Lead-Free Piezoelectric Ceramics into Application," J. Eur. Ceram. Soc., 35 [6] 1659-81 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.12.013
  15. C. W. Ahn, G. Choi, I. W. Kim, J.-S. Lee, K. Wang, Y. Hwang, and W. Jo, "Forced Electrostriction by Constraining Polarization Switching Enhances the Electromechanical Strain Properties of Incipient Piezoceramics," NPG Asia Mater., 9 [1] e346 (2017). https://doi.org/10.1038/am.2016.210
  16. H. D. Megaw, "Crystal Structure of Double Oxides of the Perovskite Type," Proc. Phys. Soc., 58 [2] 133-52 (1946). https://doi.org/10.1088/0959-5309/58/2/301
  17. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics; pp. 16-83, Academic Press, London, 1971.
  18. S.-E. Park and T. R. Shrout, "Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals," J. Appl. Phys., 82 [4] 1804-11 (1997). https://doi.org/10.1063/1.365983
  19. T. Leist, J. Chen, W. Jo, E. Aulbach, J. Suffner, and J. Rodel, "Temperature Dependence of the Piezoelectric Coefficient in BiMe$O_3-PbTiO_3$ (Me=Fe, Sc, ($Mg_{1/2}Ti_{1/2}$)) Ceramics," J. Am. Ceram. Soc., 95 [2] 711-15 (2012). https://doi.org/10.1111/j.1551-2916.2011.04848.x
  20. R. E. Cohen, "Origin of Ferroelectricity in Perovskite Oxides," Nature, 358 [6382] 136-38 (1992). https://doi.org/10.1038/358136a0
  21. J. L. Jones, B. J. Iverson, and K. J. Bowman, "Texture and Anisotropy of Polycrystalline Piezoelectrics," J. Am. Ceram. Soc., 90 [8] 2297-314 (2007). https://doi.org/10.1111/j.1551-2916.2007.01820.x
  22. M. Deluca, "Microscopic Texture Characterisation in Piezoceramics," Adv. Appl. Ceram., 115 [2] 112-22 (2016). https://doi.org/10.1080/17436753.2015.1131916
  23. S. Fushimi and T. Ikeda, "Phase Equilibrium in the System Pbo-$TiO_2-Zro_2$," J. Am. Ceram. Soc., 50 [3] 129-32 (1967). https://doi.org/10.1111/j.1151-2916.1967.tb15061.x
  24. T. Hatanaka and H. Hasegawa, "Dielectric Properties of $Pb(Zr_xti_{1-x})O_3$ Single Crystals Including Monoclinic Zirconia," Jpn. J. Appl. Phys., Part 1, 34 [9B] 5446-48 (1995). https://doi.org/10.1143/JJAP.34.5446
  25. K.-W. Kim, W. Jo, H.-R. Jin, N.-M. Hwang, and D.-Y. Kim, "Abnormal Grain Growth of Lead Zirconium Titanate (PZT) Ceramics Induced by the Penetration Twin," J. Am. Ceram. Soc., 89 [5] 1530-33 (2006). https://doi.org/10.1111/j.1551-2916.2006.00934.x
  26. S. Zhang and F. Li, "High Performance Ferroelectric Relaxor-Pb$TiO_3$ Single Crystals: Status and Perspective," J. Appl. Phys., 111 [3] 031301 (2012). https://doi.org/10.1063/1.3679521
  27. H. Fu and R. E. Cohen, "Polarization Rotation Mechanism for Ultrahigh Electromechanical Response in Single-Crystal Piezoelectrics," Nature, 403 281-83 (2000). https://doi.org/10.1038/35002022
  28. B. Noheda, J. A. Gonzalo, A. C. Caballero, C. Moure, D. E. Cox, and G. Shirane, "New Features of the Morphotropic Phase Boundary in the $Pb(Zr_{1-x}Ti_x)O_3$ System," Ferroelectrics, 237 [1] 237-44 (2000). https://doi.org/10.1080/00150190008216254
  29. B. Noheda, J. A. Gonzalo, R. Guo, S.-E. Park, L. E. Cross, D. E. Cox, and G. Shirane, "The Monoclinic Phase in PZT: New Light on Morphotropic Phase Boundaries"; pp. 304- 13 in Fundamental Physics of Ferroelectrics 2000: Aspen Center for Physics Winter Workshop - Vol. 535 AIP Conference Proceedings. Aspen, Colorado, USA, 2000.
  30. J. Frantti, Y. Fujioka, and R. M. Nieminen, "Evidence against the Polarization Rotation Model of Piezoelectric Perovskites at the Morphotropic Phase Boundary," J. Phys.: Condens. Matter, 20 [47] 472203 (2008). https://doi.org/10.1088/0953-8984/20/47/472203
  31. A. A. Heitmann and G. A. Rossetti, "Thermodynamics of Polar Anisotropy in Morphotropic Ferroelectric Solid Solutions," Phil. Mag., 90 [1-4] 71-87 (2010). https://doi.org/10.1080/14786430902897750
  32. J. Chen and R. Panda, "Review: Commercialization of Piezoelectric Single Crystals for Medical Imaging Applications"; pp. 235-240 in IEEE Ultrasonics Symposium. Rotterdam, Netherlands, 2005.
  33. E. Sun and W. Cao, "Relaxor-Based Ferroelectric Single Crystals: Growth, Domain Engineering, Characterization and Applications," Prog. Mater. Sci., 65 124-210 (2014). https://doi.org/10.1016/j.pmatsci.2014.03.006
  34. W. Jo and J. Rodel, "Electric-Field-Induced Volume Change and Room Temperature Phase Stability of $(Bi_{1/2}Na_{1/2})TiO_{3-x}$ mol.% Ba$TiO_3$ Piezoceramics," Appl. Phys. Lett., 99 [4] 042901 (2011). https://doi.org/10.1063/1.3615675
  35. W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H.-J. Kleebe, A. J. Bell, and J. Rodel, "On the Phase Identity and Its Thermal Evolution of Lead-Free $(Bi_{1/2}Na_{1/2})TiO_3$ - 6 mol% Ba$TiO_3$," J. Appl. Phys., 110 [7] 074106 (2011). https://doi.org/10.1063/1.3645054
  36. J.-Y. Lee, H.-T. Oh, and H.-Y. Lee, ""Lead-Free" Piezoelectric $Ba(Ti_{0.94}Zr_{0.06})O_3$ single Crystals with Electromechanical Coupling Factor (K33) Higher Than 0.8," J. Korean Ceram. Soc., 51 [6] 623-28 (2014). https://doi.org/10.4191/kcers.2014.51.6.623
  37. J.-Y. Lee, H.-T. Oh, and H.-Y. Lee, "Dielectric and Piezoelectric Properties of "Lead-Free" Piezoelectric Rhombohedral $Ba(Ti_{0.92}Zr_{0.08})O_3$ Single Crystals," J. Korean Ceram. Soc., 53 [2] 171-77 (2016). https://doi.org/10.4191/kcers.2016.53.2.171
  38. K.-S. Moon, D. Rout, H.-Y. Lee, and S.-J. L. Kang, "Solid State Growth of $Na_{1/2}Bi_{1/2}TiO_3-BaTiO_3$ Single Crystals and Their Enhanced Piezoelectric Properties," J. Cryst. Growth, 317 [1] 28-31 (2011). https://doi.org/10.1016/j.jcrysgro.2011.01.023
  39. T. Kimura, T. Takahashi, T. Tani, and Y. Saito, "Crystallographic Texture Development in Bismuth Sodium Titanate Prepared by Reactive-Templated Grain Growth Method," J. Am. Ceram. Soc., 87 [8] 1424-29 (2004). https://doi.org/10.1111/j.1551-2916.2004.01424.x
  40. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, "Lead-Free Piezoceramics," Nature, 432 [7013] 84-7 (2004). https://doi.org/10.1038/nature03028
  41. Y. Seno and T. Tani, "TEM Observation of a Reactive Template for Textured $Bi_{0.5}(Na_{0.87}K_{0.13})_{0.5}TiO_3$ Polycrystals," Ferroelectrics, 224 [1] 365-72 (1999). https://doi.org/10.1080/00150199908210588
  42. T. Tani, "Crystalline-Oriented Piezoelectric Bulk Ceramics with a Perovskite-Type Structure," J. Korean Phys. Soc., 32 [93] S1217-S20 (1998).
  43. C. M. Fancher, W. Jo, J. Rodel, J. E. Blendell, K. J. Bowman, and J. Ihlefeld, "Effect of Texture on Temperature- Dependent Properties of $K_{0.5}Na_{0.5}NbO_3$ Modified $Bi_{1/2}Na_{1/2}- TiO_{3-x}BaTiO_3$," J. Am. Ceram. Soc., 97 [8] 2557-63 (2014). https://doi.org/10.1111/jace.12986
  44. K. Chen, G. Xu, D. Yang, X. Wang, and J. Li, "Dielectric and Piezoelectric Properties of Lead-Free 0.95$(K_{0.5}Na_{0.5})NbO_3-0.05LiNbO_3$ Crystals Grown by the Bridgman Method," J. Appl. Phys., 101 [4] 044103 (2007). https://doi.org/10.1063/1.2562464
  45. H. Deng, X. Zhao, H. Zhang, C. Chen, X. Li, D. Lin, B. Ren, J. Jiao, and H. Luo, "Orientation Dependence of Electrical Properties of Large-Sized Sodium Potassium Niobate Lead- Free Single Crystals," Cryst. Eng. Commun., 16 [13] 2760 (2014). https://doi.org/10.1039/C3CE42464B
  46. W. Ge, H. Liu, X. Zhao, B. Fang, X. Li, F. Wang, D. Zhou, P. Yu, X. Pan, D. Lin, and H. Luo, "Crystal Growth and High Piezoelectric Performance of $0.95Na_{0.5}Bi_{0.5}TiO_3-0.05BaTiO_3$ Lead-Free Ferroelectric Materials," J. Phys. D: Appl. Phys., 41 [11] 115403 (2008). https://doi.org/10.1088/0022-3727/41/11/115403
  47. J.-Y. Lee, H.-T. Oh, and H.-Y. Lee, ""Lead-Free" Piezoelectric Ba$(Ti_{0.94}Zr_{0.06})O_3$ Single Crystals with Electromechanical Coupling Factor (K33) Higher Than 0.8," J. Korean Ceram. Soc., 51 [6] 623-28 (2014). https://doi.org/10.4191/kcers.2014.51.6.623
  48. D. Lin, Z. Li, S. Zhang, Z. Xu, and X. Yao, "Influence of $MnO_2$ Doping on the Dielectric and Piezoelectric Properties and the Domain Structure in $(K_{0.5}Na_{0.5})NbO_3$ Single Crystals," J. Am. Ceram. Soc., 93 [4] 941-44 (2010). https://doi.org/10.1111/j.1551-2916.2009.03501.x
  49. G. Xu, Z. Duan, X. Wang, and D. Yang, "Growth and Some Electrical Properties of Lead-Free Piezoelectric Crystals $(Na_{1/2}Bi_{1/2})$TiO_3$ and $(Na_{1/2}Bi_{1/2})TiO_3-BaTiO_3$ Prepared by a Bridgman Method," J. Cryst. Growth, 275 [1-2] 113-19 (2005). https://doi.org/10.1016/j.jcrysgro.2004.10.074
  50. X. Yi, H. Chen, W. Cao, M. Zhao, D. Yang, G. Ma, C. Yang, and J. Han, "Flux Growth and Characterization of Lead- Free Piezoelectric Single Crystal $[Bi_{0.5}(Na_{1-X}k_x)_{0.5}]TiO_3$," J. Cryst. Growth, 281 [2-4] 364-69 (2005). https://doi.org/10.1016/j.jcrysgro.2005.03.068
  51. Z. Yu, R. Guo, and A. Bhalla, "Dielectric Polarization and Strain Behavior of $Ba(Ti_{0.92} Zr_{0.08})O_3$ Single Crystals," Mater. Lett., 57 [2] 349-54 (2002). https://doi.org/10.1016/S0167-577X(02)00789-9
  52. Z. Yu, R. Guo, and A. S. Bhalla, "Orientation Dependence of the Ferroelectric and Piezoelectric Behavior of $Ba(Ti_{1-X}Zr_x) O_3$ Single Crystals," Appl. Phys. Lett., 77 [10] 1535-37 (2000). https://doi.org/10.1063/1.1308276
  53. Q. Zhang, Y. Zhang, F. Wang, Y. Wang, D. Lin, X. Zhao, H. Luo, W. Ge, and D. Viehland, "Enhanced Piezoelectric and Ferroelectric Properties in Mn-Doped $Na_{0.5}Bi_{0.5}TiO_3-BaTiO_3$ Single Crystals," Appl. Phys. Lett., 95 [10] 102904 (2009). https://doi.org/10.1063/1.3222942
  54. W. Bai, J. Hao, B. Shen, F. Fu, and J. Zhai, "Processing Optimization and Piezoelectric Properties of Textured Ba$(Zr,Ti)O_3$ Ceramics," J. Alloys Compd., 536 189-97 (2012). https://doi.org/10.1016/j.jallcom.2012.04.097
  55. R. E. Garcia, W. Craig Carter, and S. A. Langer, "The Effect of Texture and Microstructure on the Macroscopic Properties of Polycrystalline Piezoelectrics: Application to Barium Titanate and PZN-PT," J. Am. Ceram. Soc., 88 [3] 750-57 (2005). https://doi.org/10.1111/j.1551-2916.2005.00109.x
  56. D. Liu, Y. Yan, and H. Zhou, "Synthesis of Micron-Scale Platelet Ba$TiO_3$," J. Am. Ceram. Soc., 90 [4] 1323-26 (2007). https://doi.org/10.1111/j.1551-2916.2007.01525.x
  57. T. Sato, Y. Yoshida, and T. Kimura, "Preparation of <110>- Textured Ba$TiO_3$ Ceramics by the Reactive-Templated Grain Growth Method Using Needlelike $TiO_2$ Particles," J. Am. Ceram. Soc., 90 [9] 3005-8 (2007). https://doi.org/10.1111/j.1551-2916.2007.01837.x
  58. D. Vriami, D. Damjanovic, J. Vleugels, and O. Van der Biest, "Textured Ba$TiO_3$ by Templated Grain Growth and Electrophoretic Deposition," J. Mater. Sci., 50 [24] 7896- 907 (2015). https://doi.org/10.1007/s10853-015-9322-4
  59. W. Liu and X. Ren, "Large Piezoelectric Effect in Pb-Free Ceramics," Phys. Rev. Lett., 103 [25] 257602 (2009). https://doi.org/10.1103/PhysRevLett.103.257602
  60. M. H. Lee, D. J. Kim, J. S. Park, S. W. Kim, T. K. Song, M. H. Kim, W. J. Kim, D. Do, and I. K. Jeong, "High-Performance Lead-Free Piezoceramics with High Curie Temperatures," Adv. Mater., 27 [43] 6976-82 (2015). https://doi.org/10.1002/adma.201502424
  61. W. Jo, T. Granzow, E. Aulbach, J. Rodel, and D. Damjanovic, "Origin of the Large Strain Response in $(K_{0.5}Na_{0.5})NbO_3$- Modified ($Bi_{0.5}Na_{0.5})TiO_{3^-}BaTiO_3$ Lead-Free Piezoceramics," J. Appl. Phys., 105 [9] 094102 (2009). https://doi.org/10.1063/1.3121203
  62. Y. M. Chiang, G. W. Farrey, and A. N. Soukhojak, "Lead- Free High-Strain Single-Crystal Piezoelectrics in the Alkaline- Bismuth-Titanate Perovskite Family," Appl. Phys. Lett., 73 [25] 3683-85 (1998). https://doi.org/10.1063/1.122862
  63. T. Takenaka, K.-I. Maruyama, and K. Sakata, "$(Bi_{1/2}Na_{1/2})TiO_3- BaTiO_3$ System for Lead-Free Piezoelectric Ceramics," Jpn. J. Appl. Phys., 30 [9B] 2236-39 (1991). https://doi.org/10.1143/JJAP.30.2236
  64. S.-T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, and J. Rodel, "Giant Strain in Lead-Free Piezoceramics $Bi_{0.5}Na_{0.5^-} TiO_{3^-}BaTiO_3-K_{0.5}Na_{0.5}NbO_3$ System," Appl. Phys. Lett., 91 [11] 112906 (2007). https://doi.org/10.1063/1.2783200
  65. S.-T. Zhang, A. B. Kounga, E. Aulbach, T. Granzow, W. Jo, H.-J. Kleebe, and J. Rodel, "Lead-Free Piezoceramics with Giant Strain in the System $Bi_{0.5}Na_{0.5}TiO_3-BaTiO_3- K_{0.5}Na_{0.5}NbO_3$. I. Structure and Room Temperature Properties," J. Appl. Phys., 103 [3] 034107 (2008). https://doi.org/10.1063/1.2838472
  66. S.-T. Zhang, A. B. Kounga, E. Aulbach, W. Jo, T. Granzow, H. Ehrenberg, and J. Rodel, "Lead-Free Piezoceramics with Giant Strain in the System $Bi_{0.5}Na_{0.5}TiO_3-Ba$TiO_3-K_{0.5}Na_{0.5}NbO_3$. II. Temperature Dependent Properties," J. Appl. Phys., 103 [3] 034108 (2008). https://doi.org/10.1063/1.2838476
  67. S.-T. Zhang, A. B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rodel, and D. Damjanovic, "High-Strain Lead- Free Antiferroelectric Electrostrictors," Adv. Mater., 21 [46] 4716-20 (2009). https://doi.org/10.1002/adma.200901516
  68. J. E. Daniels, W. Jo, J. Rodel, V. Honkimaki, and J. L. Jones, "Electric-Field-Induced Phase-Change Behavior in ($Bi_{0.5}Na_{0.5})TiO_3-BaTiO_3-(K_{0.5}Na_{0.5})NbO_3$: A Combinatorial Investigation," Acta Mater., 58 [6] 2103-11 (2010). https://doi.org/10.1016/j.actamat.2009.11.052
  69. J. E. Daniels, W. Jo, J. Rodel, and J. L. Jones, "Electric- Field-Induced Phase Transformation at a Lead-Free Morphotropic Phase Boundary: Case Study in a 93%($Bi_{0.5}Na_{0.5})- TiO_3-7%BaTiO_3$ Piezoelectric Ceramics," Appl. Phys. Lett., 95 [3] 032904 (2009). https://doi.org/10.1063/1.3182679
  70. M. Hinterstein, M. Knapp, M. Holzel, W. Jo, A. Cervellino, H. Ehrenberg, and H. Fuess, "Field-Induced Phase Transition in $Bi_{1/2}Na_{1/2}TiO_3$-Based Lead-Free Piezoelectric Ceramics," J. Appl. Cryst., 43 [6] 1314-21 (2010). https://doi.org/10.1107/S0021889810038264
  71. J. Kling, X. Tan, W. Jo, H.-J. Kleebe, H. Fuess, and J. Rodel, "In Situ Transmission Electron Microscopy of Electric Field-Triggered Reversible Domain Formation in Bi- Based Lead Free Piezoceramics," J. Am. Ceram. Soc., 93 [9] 2452-55 (2010). https://doi.org/10.1111/j.1551-2916.2010.03778.x
  72. W. Jo, J. E. Daniels, J. L. Jones, X. Tan, P. A. Thomas, D. Damjanovic, and J. Rodel, "Evolving Morphotropic Phase Boundary in Lead-Free $(Bi_{1/2}Na_{1/2})TiO_3-BaTiO_3$ Piezoceramics,"J. Appl. Phys., 109 [1] 014110 (2011). https://doi.org/10.1063/1.3530737
  73. A. F. Devonshire, "Theory of Ferroelectrics," Adv. Phys., 3 [10] 85-130 (1954). https://doi.org/10.1080/00018735400101173
  74. H. F. Kay, "Electrostriction," Rep. Prog. Phys., 18 [1] 230- 50 (1955). https://doi.org/10.1088/0034-4885/18/1/306
  75. C. W. Ahn, C.-H. Hong, B.-Y. Choi, H.-P. Kim, H.-S. Han, Y. Hwang, W. Jo, K. Wang, J.-F. Li, J.-S. Lee, and I. W. Kim, "A Brief Review on Relaxor Ferroelectrics and Selected Issues in Lead-Free Relaxors," J. Korean Phys. Soc., 68 [12] 1481-94 (2016). https://doi.org/10.3938/jkps.68.1481
  76. Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, and T. Takenaka, "Large Electrostrain near the Phase Transition Temperature of ($Bi_{0.5}Na_{0.5})TiO_3-SrTiO_3$ Ferroelectric Ceramics," Appl. Phys. Lett., 92 [26] 262904 (2008). https://doi.org/10.1063/1.2955533
  77. Y. Hiruma, H. Nagata, and T. Takenaka, "Phase Diagrams and Electrical Properties of $(Bi_{1/2}Na_{1/2})TiO_3$-Based Solid Solutions," J. Appl. Phys., 104 [12] 124106 (2008). https://doi.org/10.1063/1.3043588
  78. R. Zuo, C. Ye, X. Fang, and J. Li, "Tantalum Doped0.94$Bi_{0.5}Na_{0.5}TiO_3-0.06BaTiO_3$ Piezoelectric Ceramics," J. Eur. Ceram. Soc., 28 [4] 871-77 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.08.011
  79. Y. Hiruma, H. Nagata, and T. Takenaka, "Formation of Morphotropic Phase Boundary and Electrical Properties of $(Bi_{1/2}Na_{1/2})TiO_3-Ba(Al_{1/2}Nb_{1/2})O_3$ Solid Solution Ceramics," Jpn. J. Appl. Phys., 48 [9] 09KC08 (2009).
  80. Y. Hiruma, H. Nagata, and T. Takenaka, "Detection of Morphotropic Phase Boundary of $(Bi_{1/2}Na_{1/2})TiO_3-Ba(Al_{1/2}- Sb_{1/2})O_3$ Solid-Solution Ceramics," Appl. Phys. Lett., 95 [5] 052903 (2009). https://doi.org/10.1063/1.3194146
  81. K. T. P. Seifert, W. Jo, and J. Rodel, "Temperature-Insensitive Large Strain of $(Bi_{1/2}Na_{1/2})TiO_3-(Bi_{1/2}K_{1/2})TiO_3-(K_{0.5}Na_{0.5})- NbO_3$ Lead-Free Piezoceramics," J. Am. Ceram. Soc., 93 [5] 1392-96 (2010).
  82. A. Hussain, C. W. Ahn, J. S. Lee, A. Ullah, and I. W. Kim, "Large Electric-Field-Induced Strain in Zr-Modified Lead- Free $Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}TiO_3$ Piezoelectric Ceramics," Sens. Actuators, A, 158 [1] 84-89 (2010). https://doi.org/10.1016/j.sna.2009.12.027
  83. A. Hussain, C. W. Ahn, A. Ullah, J. S. Lee, and I. W. Kim, "Effects of Hafnium Substitution on Dielectric and Electromechanical Properties of Lead-Free $Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}- (Ti_{1-x}Hf_x)O_3$ Ceramics," Jpn. J. Appl. Phys., 49 [4] 041504 (2010). https://doi.org/10.1143/JJAP.49.041504
  84. A. Ullah, C. W. Ahn, A. Hussain, S. Y. Lee, H. J. Lee, and I. W. Kim, "Phase Transitions and Large Electric Field- Induced Strain in BiAl$O_3$-Modified $Bi_{0.5}(Na, K)_{0.5}TiO_3$ Lead- Free Piezoelectric Ceramics," Curr. Appl. Phys., 10 [4] 1174-81 (2010). https://doi.org/10.1016/j.cap.2010.02.006
  85. K.-N. Pham, A. Hussain, C. W. Ahn, W. Kim, S. J. Jeong, and J.-S. Lee, "Giant Strain in Nb-Doped $Bi_{0.5}(Na_{0.82}K_{0.18})_{0.5}TiO_3$ Lead-Free Electromechanical Ceramics," Mater. Lett., 64 [20] 2219-22 (2010). https://doi.org/10.1016/j.matlet.2010.07.048
  86. R. Dittmer, W. Jo, J. Daniels, S. Schaab, and J. Rodel, "Relaxor Characteristics of Morphotropic Phase Boundary $(Bi_{1/2}Na_{1/2})TiO_3-(Bi_{1/2}K_{1/2})TiO_3$ Modified with $Bi(Zn_{1/2}Ti_{1/2})O_3$," J. Am. Ceram. Soc., 94 [12] 4283-90 (2011). https://doi.org/10.1111/j.1551-2916.2011.04631.x
  87. W. Krauss, D. Schutz, M. Naderer, D. Orosel, and K. Reichmann, "BNT-Based Multilayer Device with Large and Temperature Independent Strain Made by a Water-Based Preparation Process," J. Eur. Ceram. Soc., 31 [9] 1857-60 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.02.032
  88. F. F. Wang, M. Xu, Y. X. Tang, T. Wang, W. Z. Shi, and C. M. Leung, "Large Strain Response in the Ternary $Bi_{0.5}Na_{0.5}- TiO_3-BaTiO_3-SrTiO_3$ Solid Solutions," J. Am. Ceram. Soc., 95 [6] 1955-59 (2012). https://doi.org/10.1111/j.1551-2916.2012.05119.x
  89. S.-Y. Choi, S.-J. Jeong, D.-S. Lee, M.-S. Kim, J.-S. Lee, J. H. Cho, B. I. Kim, and Y. Ikuhara, "Gigantic Electrostrain in Duplex Structured Alkaline Niobates," Chem. Mater., 24 [17] 3363-69 (2012). https://doi.org/10.1021/cm301324h
  90. H.-S. Han, W. Jo, J. Rodel, I.-K. Hong, W.-P. Tai, and J.-S. Lee, "Coexistence of Ergodicity and Nonergodicity in $LaFeO_3$- Modified $Bi_{1/2}(Na_{0.78}K_{0.22})_{1/2}TiO_3$ Relaxors," J. Phys.: Condens. Matter, 24 [36] 365901 (2012). https://doi.org/10.1088/0953-8984/24/36/365901
  91. V.-Q. Nguyen, H.-S. Han, K.-J. Kim, D.-D. Dang, K.-K. Ahn, and J.-S. Lee, "Strain Enhancement in $Bi_{1/2}(Na_{0.82}K_{0.12})_{1/2}TiO_3$ Lead-Free Electromechanical Ceramics by Co-Doping with Li and Ta," J. Alloy. Compd., 511 [1] 237-41 (2012). https://doi.org/10.1016/j.jallcom.2011.09.043
  92. R. Dittmer, W. Jo, E. Aulbach, T. Granzow, and J. Roodel, "Frequency-Dependence of Large-Signal Properties in Lead- Free Piezoceramics," J. Appl. Phys., 112 [1] 014101 (2012). https://doi.org/10.1063/1.4730600
  93. H.-S. Han, W. Jo, J.-K. Kang, C.-W. Ahn, I. Won Kim, K.- K. Ahn, and J.-S. Lee, "Incipient Piezoelectrics and Electrostriction Behavior in Sn-Doped $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ Lead-Free Ceramics," J. Appl. Phys., 113 [15] 154102 (2013). https://doi.org/10.1063/1.4801893
  94. H. B. Lee, D. J. Heo, R. A. Malik, C. H. Yoon, H.-S. Han, and J. S. Lee, "Lead-Free $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ Ceramcis Exhibiting Large Strain with Small Hysteresis," Ceram. Int., 39 [S1] S705-8 (2013). https://doi.org/10.1016/j.ceramint.2012.10.166
  95. C. Groh, W. Jo, and J. Rodel, "Frequency and Temperature Dependence of Actuating Performance of $Bi_{1/2}Na_{1/2}TiO_3- BaTiO_3$ Based Relaxor/Ferroelectric Composites," J. Appl. Phys., 115 [23] 234107 (2014). https://doi.org/10.1063/1.4876680
  96. H. S. Han, I. K. Hong, Y.-M. Kong, J. S. Lee, and W. Jo, "Effect of Nb Doping on the Dielectric and Strain Properties of Lead-Free $0.94(Bi_{1/2}Na_{1/2})TiO_3-0.06BaTiO_3$ Ceramics," J. Korean Ceram. Soc., 53 [2] 145-49 (2016). https://doi.org/10.4191/kcers.2016.53.2.145
  97. M. Acosta, W. Jo, J. Rodel, and D. C. Lupascu, "Temperatureand Frequency-Dependent Properties of the $0.75Bi_{1/2}Na_{1/2}TiO_3-0.25SrTiO_3$ Lead-Free Incipient Piezoceramic," J. Am. Ceram. Soc., 97 [6] 1937-43 (2014). https://doi.org/10.1111/jace.12884
  98. D. S. Lee, D. H. Lim, M. S. Kim, K. H. Kim, and S. J. Jeong, "Electric Field-Induced Deformation Behavior in Mixed $Bi_{0.5}Na_{0.5}TiO_3$ and $Bi_{0.5}(Na_{0.75}K_{0.25})_{0.5}TiO_3-BiAlO_3$," Appl. Phys. Lett., 99 [6] 062906 (2011). https://doi.org/10.1063/1.3621878
  99. D.-S. Lee, S. J. Jeong, M. S. Kim, and J. H. Koh, "Electric Field Induced Polarization and Strain of Bi-Based Ceramic Composites," J. Appl. Phys., 112 [12] 124109 (2012). https://doi.org/10.1063/1.4770372
  100. C. Groh, D. J. Franzbach, W. Jo, K. G. Webber, J. Kling, L. A. Schmitt, H. J. Kleebe, S.-J. Jeong, J.-S. Lee, and J. Rodel, "Relaxor/Ferroelectric Composites: A Solution in the Quest for Practically Viable Lead-Free Incipient Piezoceramics," Adv. Funct. Mater., 24 [3] 356-62 (2013). https://doi.org/10.1002/adfm.201302102
  101. H. Zhang, C. Groh, Q. Zhang, W. Jo, K. G. Webber, and J. Rodel, "Large Strain in Relaxor/Ferroelectric Composite Lead-Free Piezoceramics," Adv. Electron. Mater., 1 [6] 1500018 (2015). https://doi.org/10.1002/aelm.201500018
  102. T. Takenaka, K. Sakata, and K. Toda, "Piezoelectric Properties of Bismuth Layer-Structured Ferroelectric $Na_{0. 5}Bi_{4. 5}-Ti_4O_{15}$ Ceramic," Jpn. J. Appl. Phys., 24 [S2] 730 (1985). https://doi.org/10.7567/JJAPS.24S2.730
  103. J. S. Kim, C. W. Ahn, D. S. Lee, I. W. Kim, J. S. Lee, B. M. Jin, and S. H. Bae, "An Advanced Ferroelectric Properties of the Mn Doped $Na_{0.5}Bi_{4.5}Ti_4O_{15}$ Ceramics Fabricated by Hot-Forging Method," Ferroelectrics, 332 [1] 45-9 (2006). https://doi.org/10.1080/00150190500324527
  104. C.-M. Wang, L. Zhao, J.-F. Wang, S. Zhang, and T. R. Shrout, "Enhanced Piezoelectric Properties of Sodium Bismuth Titanate ($Na_{0.5}Bi_{4.5}Ti_4O_{15}$) Ceramics with B-Site Cobalt Modification," Phys. Status Solidi, 3 [1] 7-9 (2009).
  105. F. Li, L. Jin, Z. Xu, and S. Zhang, "Electrostrictive Effect in Ferroelectrics: An Alternative Approach to Improve Piezoelectricity," Appl. Phys. Rev., 1 [1] 011103 (2014). https://doi.org/10.1063/1.4861260
  106. S. Zhang, R. Xia, H. Hao, H. Liu, and T. R. Shrout, "Mitigation of Thermal and Fatigue Behavior in $K_{0.5}Na_{0.5}NbO_3$- Based Lead Free Piezoceramics," Appl. Phys. Lett., 92 [15] 152904-43 (2008). https://doi.org/10.1063/1.2908960

Cited by

  1. Dielectric and piezoelectric properties of Bi1/2Na1/2TiO3–SrTiO3 lead–free ceramics pp.1573-8663, 2018, https://doi.org/10.1007/s10832-018-0161-y
  2. Relaxor-ferroelectric transitions: Sodium bismuth titanate derivatives vol.43, pp.08, 2018, https://doi.org/10.1557/mrs.2018.156
  3. High Energy Storage Properties and Electrical Field Stability of Energy Efficiency of (Pb0.89La0.11)(Zr0.70Ti0.30)0.9725O3 Relaxor Ferroelectric Ceramics pp.2093-6788, 2019, https://doi.org/10.1007/s13391-019-00124-z
  4. Linear and Nonlinear Dielectric Ceramics for High-Power Energy Storage Capacitor Applications vol.56, pp.1, 2019, https://doi.org/10.4191/kcers.2019.56.1.02
  5. Symmetry-bridging phase as the mechanism for the large strains in relaxor-PbTiO3 single crystals vol.39, pp.11, 2017, https://doi.org/10.1016/j.jeurceramsoc.2019.04.022
  6. Effect of Electric Field Concentration by Electrode Patterning on the Incipient Piezoelectric Strain Properties of Lead-Free Piezoceramics vol.56, pp.6, 2019, https://doi.org/10.4191/kcers.2019.56.6.03
  7. TSDC 방법을 이용한 AC 폴링된 PMN-PT 단결정의 디폴링 메커니즘 분석 vol.29, pp.1, 2017, https://doi.org/10.5369/jsst.2019.29.1.59
  8. Progress in lead-free piezoelectric nanofiller materials and related composite nanogenerator devices vol.2, pp.8, 2017, https://doi.org/10.1039/c9na00809h
  9. 산화구리가 피복된 Na0.5Bi4.5Ti4O15 틀입자를 이용한 BNKT 무연 압전 세라믹스의 저온소성 연구 vol.33, pp.5, 2017, https://doi.org/10.4313/jkem.2020.33.5.337
  10. Bi0.5Na0.5TiO3-BiFeO3-SrTiO3 삼성분계 무연 압전 세라믹스의 강유전체-완화형 강유전체 상전이 거동 vol.34, pp.1, 2021, https://doi.org/10.4313/jkem.2021.34.1.1
  11. Pyroelectric Properties of BaxSr(1−x)TiO3/PVDF-TrFE Coating on Silicon vol.11, pp.8, 2017, https://doi.org/10.3390/membranes11080577