References
- G. H. Haertling, "Ferroelectric Ceramics: History and Technology," J. Am. Ceram. Soc., 82 [4] 797-818 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01840.x
- W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rodel, "Giant Electric-Field-Induced Strains in Lead-Free Piezoceramics for Actuator Applications - Status and Perspective," J. Electroceram., 29 [1] 71-93 (2012). https://doi.org/10.1007/s10832-012-9742-3
- C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J. S. Son, C. W. Ahn, and W. Jo, "Lead-Free Piezoceramics - Where to Move On?," J. Materiomics, 2 [1] 1-24 (2016). https://doi.org/10.1016/j.jmat.2015.12.002
- L. E. Cross, "Materials Science: Lead-Free at Last," Nature, 432 [7013] 24-25 (2004). https://doi.org/10.1038/nature03142
- T. R. Shrout and S. J. Zhang, "Lead-Free Piezoelectric Ceramics: Alternatives for PZT?," J. Electroceram., 19 [1] 113-26 (2007). https://doi.org/10.1007/s10832-007-9047-0
- T. Takenaka, H. Nagata, and Y. Hiruma, "Current Developments and Prospective of Lead-Free Piezoelectric Ceramics," Jpn. J. Appl. Phys., 47 [5] 3787-801 (2008). https://doi.org/10.1143/JJAP.47.3787
- P. K. Panda, "Review: Environmental Friendly Lead-Free Piezoelectric Materials," J. Mater. Sci., 44 [19] 5049-62 (2009). https://doi.org/10.1007/s10853-009-3643-0
- J. Rodel, W. Jo, K. T. P. Seifert, E.-M. Anton, T. Granzow, and D. Damjanovic, "Perspective on the Development of Lead-Free Piezoceramics," J. Am. Ceram. Soc., 92 [6] 1153- 77 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
- D. Damjanovic, N. Klein, J. Li, and V. Porokhonskyy, "What Can Be Expected from Lead-Free Piezoelectric Materials?," Funct. Mater. Lett., 3 [1] 5-13 (2010). https://doi.org/10.1142/S1793604710000919
- R.-A. Eichel and H. Kungl, "Recent Developments and Future Perspectives of Lead-Free Ferroelectrics," Funct. Mater. Lett., 03 [01] 1-4 (2010). https://doi.org/10.1142/S179360471000097X
- E. Aksel and J. L. Jones, "Advances in Lead-Free Piezoelectric Materials for Sensors and Actuators," Sensors (Basel), 10 [3] 1935-54 (2010). https://doi.org/10.3390/s100301935
- I. Coondoo, N. Panwar, and A. Kholkin, "Lead-Free Piezoelectrics: Current Status and Perspectives," J. Adv. Dielectrics, 3 [02] 1330002 (2013). https://doi.org/10.1142/S2010135X13300028
-
J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng, F.-Z. Yao, and D. J. Green, "(K,Na)
$NbO_3$ -Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges," J. Am. Ceram. Soc., 96 [12] 3677-96 (2013). https://doi.org/10.1111/jace.12715 - J. Rodel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, "Transferring Lead-Free Piezoelectric Ceramics into Application," J. Eur. Ceram. Soc., 35 [6] 1659-81 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.12.013
- C. W. Ahn, G. Choi, I. W. Kim, J.-S. Lee, K. Wang, Y. Hwang, and W. Jo, "Forced Electrostriction by Constraining Polarization Switching Enhances the Electromechanical Strain Properties of Incipient Piezoceramics," NPG Asia Mater., 9 [1] e346 (2017). https://doi.org/10.1038/am.2016.210
- H. D. Megaw, "Crystal Structure of Double Oxides of the Perovskite Type," Proc. Phys. Soc., 58 [2] 133-52 (1946). https://doi.org/10.1088/0959-5309/58/2/301
- B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics; pp. 16-83, Academic Press, London, 1971.
- S.-E. Park and T. R. Shrout, "Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals," J. Appl. Phys., 82 [4] 1804-11 (1997). https://doi.org/10.1063/1.365983
-
T. Leist, J. Chen, W. Jo, E. Aulbach, J. Suffner, and J. Rodel, "Temperature Dependence of the Piezoelectric Coefficient in BiMe
$O_3-PbTiO_3$ (Me=Fe, Sc, ($Mg_{1/2}Ti_{1/2}$ )) Ceramics," J. Am. Ceram. Soc., 95 [2] 711-15 (2012). https://doi.org/10.1111/j.1551-2916.2011.04848.x - R. E. Cohen, "Origin of Ferroelectricity in Perovskite Oxides," Nature, 358 [6382] 136-38 (1992). https://doi.org/10.1038/358136a0
- J. L. Jones, B. J. Iverson, and K. J. Bowman, "Texture and Anisotropy of Polycrystalline Piezoelectrics," J. Am. Ceram. Soc., 90 [8] 2297-314 (2007). https://doi.org/10.1111/j.1551-2916.2007.01820.x
- M. Deluca, "Microscopic Texture Characterisation in Piezoceramics," Adv. Appl. Ceram., 115 [2] 112-22 (2016). https://doi.org/10.1080/17436753.2015.1131916
-
S. Fushimi and T. Ikeda, "Phase Equilibrium in the System Pbo-
$TiO_2-Zro_2$ ," J. Am. Ceram. Soc., 50 [3] 129-32 (1967). https://doi.org/10.1111/j.1151-2916.1967.tb15061.x -
T. Hatanaka and H. Hasegawa, "Dielectric Properties of
$Pb(Zr_xti_{1-x})O_3$ Single Crystals Including Monoclinic Zirconia," Jpn. J. Appl. Phys., Part 1, 34 [9B] 5446-48 (1995). https://doi.org/10.1143/JJAP.34.5446 - K.-W. Kim, W. Jo, H.-R. Jin, N.-M. Hwang, and D.-Y. Kim, "Abnormal Grain Growth of Lead Zirconium Titanate (PZT) Ceramics Induced by the Penetration Twin," J. Am. Ceram. Soc., 89 [5] 1530-33 (2006). https://doi.org/10.1111/j.1551-2916.2006.00934.x
-
S. Zhang and F. Li, "High Performance Ferroelectric Relaxor-Pb
$TiO_3$ Single Crystals: Status and Perspective," J. Appl. Phys., 111 [3] 031301 (2012). https://doi.org/10.1063/1.3679521 - H. Fu and R. E. Cohen, "Polarization Rotation Mechanism for Ultrahigh Electromechanical Response in Single-Crystal Piezoelectrics," Nature, 403 281-83 (2000). https://doi.org/10.1038/35002022
-
B. Noheda, J. A. Gonzalo, A. C. Caballero, C. Moure, D. E. Cox, and G. Shirane, "New Features of the Morphotropic Phase Boundary in the
$Pb(Zr_{1-x}Ti_x)O_3$ System," Ferroelectrics, 237 [1] 237-44 (2000). https://doi.org/10.1080/00150190008216254 - B. Noheda, J. A. Gonzalo, R. Guo, S.-E. Park, L. E. Cross, D. E. Cox, and G. Shirane, "The Monoclinic Phase in PZT: New Light on Morphotropic Phase Boundaries"; pp. 304- 13 in Fundamental Physics of Ferroelectrics 2000: Aspen Center for Physics Winter Workshop - Vol. 535 AIP Conference Proceedings. Aspen, Colorado, USA, 2000.
- J. Frantti, Y. Fujioka, and R. M. Nieminen, "Evidence against the Polarization Rotation Model of Piezoelectric Perovskites at the Morphotropic Phase Boundary," J. Phys.: Condens. Matter, 20 [47] 472203 (2008). https://doi.org/10.1088/0953-8984/20/47/472203
- A. A. Heitmann and G. A. Rossetti, "Thermodynamics of Polar Anisotropy in Morphotropic Ferroelectric Solid Solutions," Phil. Mag., 90 [1-4] 71-87 (2010). https://doi.org/10.1080/14786430902897750
- J. Chen and R. Panda, "Review: Commercialization of Piezoelectric Single Crystals for Medical Imaging Applications"; pp. 235-240 in IEEE Ultrasonics Symposium. Rotterdam, Netherlands, 2005.
- E. Sun and W. Cao, "Relaxor-Based Ferroelectric Single Crystals: Growth, Domain Engineering, Characterization and Applications," Prog. Mater. Sci., 65 124-210 (2014). https://doi.org/10.1016/j.pmatsci.2014.03.006
-
W. Jo and J. Rodel, "Electric-Field-Induced Volume Change and Room Temperature Phase Stability of
$(Bi_{1/2}Na_{1/2})TiO_{3-x}$ mol.% Ba$TiO_3$ Piezoceramics," Appl. Phys. Lett., 99 [4] 042901 (2011). https://doi.org/10.1063/1.3615675 -
W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H.-J. Kleebe, A. J. Bell, and J. Rodel, "On the Phase Identity and Its Thermal Evolution of Lead-Free
$(Bi_{1/2}Na_{1/2})TiO_3$ - 6 mol% Ba$TiO_3$ ," J. Appl. Phys., 110 [7] 074106 (2011). https://doi.org/10.1063/1.3645054 -
J.-Y. Lee, H.-T. Oh, and H.-Y. Lee, ""Lead-Free" Piezoelectric
$Ba(Ti_{0.94}Zr_{0.06})O_3$ single Crystals with Electromechanical Coupling Factor (K33) Higher Than 0.8," J. Korean Ceram. Soc., 51 [6] 623-28 (2014). https://doi.org/10.4191/kcers.2014.51.6.623 -
J.-Y. Lee, H.-T. Oh, and H.-Y. Lee, "Dielectric and Piezoelectric Properties of "Lead-Free" Piezoelectric Rhombohedral
$Ba(Ti_{0.92}Zr_{0.08})O_3$ Single Crystals," J. Korean Ceram. Soc., 53 [2] 171-77 (2016). https://doi.org/10.4191/kcers.2016.53.2.171 -
K.-S. Moon, D. Rout, H.-Y. Lee, and S.-J. L. Kang, "Solid State Growth of
$Na_{1/2}Bi_{1/2}TiO_3-BaTiO_3$ Single Crystals and Their Enhanced Piezoelectric Properties," J. Cryst. Growth, 317 [1] 28-31 (2011). https://doi.org/10.1016/j.jcrysgro.2011.01.023 - T. Kimura, T. Takahashi, T. Tani, and Y. Saito, "Crystallographic Texture Development in Bismuth Sodium Titanate Prepared by Reactive-Templated Grain Growth Method," J. Am. Ceram. Soc., 87 [8] 1424-29 (2004). https://doi.org/10.1111/j.1551-2916.2004.01424.x
- Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, "Lead-Free Piezoceramics," Nature, 432 [7013] 84-7 (2004). https://doi.org/10.1038/nature03028
-
Y. Seno and T. Tani, "TEM Observation of a Reactive Template for Textured
$Bi_{0.5}(Na_{0.87}K_{0.13})_{0.5}TiO_3$ Polycrystals," Ferroelectrics, 224 [1] 365-72 (1999). https://doi.org/10.1080/00150199908210588 - T. Tani, "Crystalline-Oriented Piezoelectric Bulk Ceramics with a Perovskite-Type Structure," J. Korean Phys. Soc., 32 [93] S1217-S20 (1998).
-
C. M. Fancher, W. Jo, J. Rodel, J. E. Blendell, K. J. Bowman, and J. Ihlefeld, "Effect of Texture on Temperature- Dependent Properties of
$K_{0.5}Na_{0.5}NbO_3$ Modified$Bi_{1/2}Na_{1/2}- TiO_{3-x}BaTiO_3$ ," J. Am. Ceram. Soc., 97 [8] 2557-63 (2014). https://doi.org/10.1111/jace.12986 -
K. Chen, G. Xu, D. Yang, X. Wang, and J. Li, "Dielectric and Piezoelectric Properties of Lead-Free 0.95
$(K_{0.5}Na_{0.5})NbO_3-0.05LiNbO_3$ Crystals Grown by the Bridgman Method," J. Appl. Phys., 101 [4] 044103 (2007). https://doi.org/10.1063/1.2562464 - H. Deng, X. Zhao, H. Zhang, C. Chen, X. Li, D. Lin, B. Ren, J. Jiao, and H. Luo, "Orientation Dependence of Electrical Properties of Large-Sized Sodium Potassium Niobate Lead- Free Single Crystals," Cryst. Eng. Commun., 16 [13] 2760 (2014). https://doi.org/10.1039/C3CE42464B
-
W. Ge, H. Liu, X. Zhao, B. Fang, X. Li, F. Wang, D. Zhou, P. Yu, X. Pan, D. Lin, and H. Luo, "Crystal Growth and High Piezoelectric Performance of
$0.95Na_{0.5}Bi_{0.5}TiO_3-0.05BaTiO_3$ Lead-Free Ferroelectric Materials," J. Phys. D: Appl. Phys., 41 [11] 115403 (2008). https://doi.org/10.1088/0022-3727/41/11/115403 -
J.-Y. Lee, H.-T. Oh, and H.-Y. Lee, ""Lead-Free" Piezoelectric Ba
$(Ti_{0.94}Zr_{0.06})O_3$ Single Crystals with Electromechanical Coupling Factor (K33) Higher Than 0.8," J. Korean Ceram. Soc., 51 [6] 623-28 (2014). https://doi.org/10.4191/kcers.2014.51.6.623 -
D. Lin, Z. Li, S. Zhang, Z. Xu, and X. Yao, "Influence of
$MnO_2$ Doping on the Dielectric and Piezoelectric Properties and the Domain Structure in$(K_{0.5}Na_{0.5})NbO_3$ Single Crystals," J. Am. Ceram. Soc., 93 [4] 941-44 (2010). https://doi.org/10.1111/j.1551-2916.2009.03501.x -
G. Xu, Z. Duan, X. Wang, and D. Yang, "Growth and Some Electrical Properties of Lead-Free Piezoelectric Crystals
$(Na_{1/2}Bi_{1/2}) https://doi.org/10.1016/j.jcrysgro.2004.10.074$TiO_3$ and$(Na_{1/2}Bi_{1/2})TiO_3-BaTiO_3$ Prepared by a Bridgman Method," J. Cryst. Growth, 275 [1-2] 113-19 (2005). -
X. Yi, H. Chen, W. Cao, M. Zhao, D. Yang, G. Ma, C. Yang, and J. Han, "Flux Growth and Characterization of Lead- Free Piezoelectric Single Crystal
$[Bi_{0.5}(Na_{1-X}k_x)_{0.5}]TiO_3$ ," J. Cryst. Growth, 281 [2-4] 364-69 (2005). https://doi.org/10.1016/j.jcrysgro.2005.03.068 -
Z. Yu, R. Guo, and A. Bhalla, "Dielectric Polarization and Strain Behavior of
$Ba(Ti_{0.92} Zr_{0.08})O_3$ Single Crystals," Mater. Lett., 57 [2] 349-54 (2002). https://doi.org/10.1016/S0167-577X(02)00789-9 -
Z. Yu, R. Guo, and A. S. Bhalla, "Orientation Dependence of the Ferroelectric and Piezoelectric Behavior of
$Ba(Ti_{1-X}Zr_x) O_3$ Single Crystals," Appl. Phys. Lett., 77 [10] 1535-37 (2000). https://doi.org/10.1063/1.1308276 -
Q. Zhang, Y. Zhang, F. Wang, Y. Wang, D. Lin, X. Zhao, H. Luo, W. Ge, and D. Viehland, "Enhanced Piezoelectric and Ferroelectric Properties in Mn-Doped
$Na_{0.5}Bi_{0.5}TiO_3-BaTiO_3$ Single Crystals," Appl. Phys. Lett., 95 [10] 102904 (2009). https://doi.org/10.1063/1.3222942 -
W. Bai, J. Hao, B. Shen, F. Fu, and J. Zhai, "Processing Optimization and Piezoelectric Properties of Textured Ba
$(Zr,Ti)O_3$ Ceramics," J. Alloys Compd., 536 189-97 (2012). https://doi.org/10.1016/j.jallcom.2012.04.097 - R. E. Garcia, W. Craig Carter, and S. A. Langer, "The Effect of Texture and Microstructure on the Macroscopic Properties of Polycrystalline Piezoelectrics: Application to Barium Titanate and PZN-PT," J. Am. Ceram. Soc., 88 [3] 750-57 (2005). https://doi.org/10.1111/j.1551-2916.2005.00109.x
-
D. Liu, Y. Yan, and H. Zhou, "Synthesis of Micron-Scale Platelet Ba
$TiO_3$ ," J. Am. Ceram. Soc., 90 [4] 1323-26 (2007). https://doi.org/10.1111/j.1551-2916.2007.01525.x -
T. Sato, Y. Yoshida, and T. Kimura, "Preparation of <110>- Textured Ba
$TiO_3$ Ceramics by the Reactive-Templated Grain Growth Method Using Needlelike$TiO_2$ Particles," J. Am. Ceram. Soc., 90 [9] 3005-8 (2007). https://doi.org/10.1111/j.1551-2916.2007.01837.x -
D. Vriami, D. Damjanovic, J. Vleugels, and O. Van der Biest, "Textured Ba
$TiO_3$ by Templated Grain Growth and Electrophoretic Deposition," J. Mater. Sci., 50 [24] 7896- 907 (2015). https://doi.org/10.1007/s10853-015-9322-4 - W. Liu and X. Ren, "Large Piezoelectric Effect in Pb-Free Ceramics," Phys. Rev. Lett., 103 [25] 257602 (2009). https://doi.org/10.1103/PhysRevLett.103.257602
- M. H. Lee, D. J. Kim, J. S. Park, S. W. Kim, T. K. Song, M. H. Kim, W. J. Kim, D. Do, and I. K. Jeong, "High-Performance Lead-Free Piezoceramics with High Curie Temperatures," Adv. Mater., 27 [43] 6976-82 (2015). https://doi.org/10.1002/adma.201502424
-
W. Jo, T. Granzow, E. Aulbach, J. Rodel, and D. Damjanovic, "Origin of the Large Strain Response in
$(K_{0.5}Na_{0.5})NbO_3$ - Modified ($Bi_{0.5}Na_{0.5})TiO_{3^-}BaTiO_3$ Lead-Free Piezoceramics," J. Appl. Phys., 105 [9] 094102 (2009). https://doi.org/10.1063/1.3121203 - Y. M. Chiang, G. W. Farrey, and A. N. Soukhojak, "Lead- Free High-Strain Single-Crystal Piezoelectrics in the Alkaline- Bismuth-Titanate Perovskite Family," Appl. Phys. Lett., 73 [25] 3683-85 (1998). https://doi.org/10.1063/1.122862
-
T. Takenaka, K.-I. Maruyama, and K. Sakata, "
$(Bi_{1/2}Na_{1/2})TiO_3- BaTiO_3$ System for Lead-Free Piezoelectric Ceramics," Jpn. J. Appl. Phys., 30 [9B] 2236-39 (1991). https://doi.org/10.1143/JJAP.30.2236 -
S.-T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, and J. Rodel, "Giant Strain in Lead-Free Piezoceramics
$Bi_{0.5}Na_{0.5^-} TiO_{3^-}BaTiO_3-K_{0.5}Na_{0.5}NbO_3$ System," Appl. Phys. Lett., 91 [11] 112906 (2007). https://doi.org/10.1063/1.2783200 -
S.-T. Zhang, A. B. Kounga, E. Aulbach, T. Granzow, W. Jo, H.-J. Kleebe, and J. Rodel, "Lead-Free Piezoceramics with Giant Strain in the System
$Bi_{0.5}Na_{0.5}TiO_3-BaTiO_3- K_{0.5}Na_{0.5}NbO_3$ . I. Structure and Room Temperature Properties," J. Appl. Phys., 103 [3] 034107 (2008). https://doi.org/10.1063/1.2838472 -
S.-T. Zhang, A. B. Kounga, E. Aulbach, W. Jo, T. Granzow, H. Ehrenberg, and J. Rodel, "Lead-Free Piezoceramics with Giant Strain in the System
$Bi_{0.5}Na_{0.5}TiO_3-Ba https://doi.org/10.1063/1.2838476$TiO_3-K_{0.5}Na_{0.5}NbO_3$ . II. Temperature Dependent Properties," J. Appl. Phys., 103 [3] 034108 (2008). - S.-T. Zhang, A. B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rodel, and D. Damjanovic, "High-Strain Lead- Free Antiferroelectric Electrostrictors," Adv. Mater., 21 [46] 4716-20 (2009). https://doi.org/10.1002/adma.200901516
-
J. E. Daniels, W. Jo, J. Rodel, V. Honkimaki, and J. L. Jones, "Electric-Field-Induced Phase-Change Behavior in (
$Bi_{0.5}Na_{0.5})TiO_3-BaTiO_3-(K_{0.5}Na_{0.5})NbO_3$ : A Combinatorial Investigation," Acta Mater., 58 [6] 2103-11 (2010). https://doi.org/10.1016/j.actamat.2009.11.052 -
J. E. Daniels, W. Jo, J. Rodel, and J. L. Jones, "Electric- Field-Induced Phase Transformation at a Lead-Free Morphotropic Phase Boundary: Case Study in a 93%(
$Bi_{0.5}Na_{0.5})- TiO_3-7%BaTiO_3$ Piezoelectric Ceramics," Appl. Phys. Lett., 95 [3] 032904 (2009). https://doi.org/10.1063/1.3182679 -
M. Hinterstein, M. Knapp, M. Holzel, W. Jo, A. Cervellino, H. Ehrenberg, and H. Fuess, "Field-Induced Phase Transition in
$Bi_{1/2}Na_{1/2}TiO_3$ -Based Lead-Free Piezoelectric Ceramics," J. Appl. Cryst., 43 [6] 1314-21 (2010). https://doi.org/10.1107/S0021889810038264 - J. Kling, X. Tan, W. Jo, H.-J. Kleebe, H. Fuess, and J. Rodel, "In Situ Transmission Electron Microscopy of Electric Field-Triggered Reversible Domain Formation in Bi- Based Lead Free Piezoceramics," J. Am. Ceram. Soc., 93 [9] 2452-55 (2010). https://doi.org/10.1111/j.1551-2916.2010.03778.x
-
W. Jo, J. E. Daniels, J. L. Jones, X. Tan, P. A. Thomas, D. Damjanovic, and J. Rodel, "Evolving Morphotropic Phase Boundary in Lead-Free
$(Bi_{1/2}Na_{1/2})TiO_3-BaTiO_3$ Piezoceramics,"J. Appl. Phys., 109 [1] 014110 (2011). https://doi.org/10.1063/1.3530737 - A. F. Devonshire, "Theory of Ferroelectrics," Adv. Phys., 3 [10] 85-130 (1954). https://doi.org/10.1080/00018735400101173
- H. F. Kay, "Electrostriction," Rep. Prog. Phys., 18 [1] 230- 50 (1955). https://doi.org/10.1088/0034-4885/18/1/306
- C. W. Ahn, C.-H. Hong, B.-Y. Choi, H.-P. Kim, H.-S. Han, Y. Hwang, W. Jo, K. Wang, J.-F. Li, J.-S. Lee, and I. W. Kim, "A Brief Review on Relaxor Ferroelectrics and Selected Issues in Lead-Free Relaxors," J. Korean Phys. Soc., 68 [12] 1481-94 (2016). https://doi.org/10.3938/jkps.68.1481
-
Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, and T. Takenaka, "Large Electrostrain near the Phase Transition Temperature of (
$Bi_{0.5}Na_{0.5})TiO_3-SrTiO_3$ Ferroelectric Ceramics," Appl. Phys. Lett., 92 [26] 262904 (2008). https://doi.org/10.1063/1.2955533 -
Y. Hiruma, H. Nagata, and T. Takenaka, "Phase Diagrams and Electrical Properties of
$(Bi_{1/2}Na_{1/2})TiO_3$ -Based Solid Solutions," J. Appl. Phys., 104 [12] 124106 (2008). https://doi.org/10.1063/1.3043588 -
R. Zuo, C. Ye, X. Fang, and J. Li, "Tantalum Doped0.94
$Bi_{0.5}Na_{0.5}TiO_3-0.06BaTiO_3$ Piezoelectric Ceramics," J. Eur. Ceram. Soc., 28 [4] 871-77 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.08.011 -
Y. Hiruma, H. Nagata, and T. Takenaka, "Formation of Morphotropic Phase Boundary and Electrical Properties of
$(Bi_{1/2}Na_{1/2})TiO_3-Ba(Al_{1/2}Nb_{1/2})O_3$ Solid Solution Ceramics," Jpn. J. Appl. Phys., 48 [9] 09KC08 (2009). -
Y. Hiruma, H. Nagata, and T. Takenaka, "Detection of Morphotropic Phase Boundary of
$(Bi_{1/2}Na_{1/2})TiO_3-Ba(Al_{1/2}- Sb_{1/2})O_3$ Solid-Solution Ceramics," Appl. Phys. Lett., 95 [5] 052903 (2009). https://doi.org/10.1063/1.3194146 -
K. T. P. Seifert, W. Jo, and J. Rodel, "Temperature-Insensitive Large Strain of
$(Bi_{1/2}Na_{1/2})TiO_3-(Bi_{1/2}K_{1/2})TiO_3-(K_{0.5}Na_{0.5})- NbO_3$ Lead-Free Piezoceramics," J. Am. Ceram. Soc., 93 [5] 1392-96 (2010). -
A. Hussain, C. W. Ahn, J. S. Lee, A. Ullah, and I. W. Kim, "Large Electric-Field-Induced Strain in Zr-Modified Lead- Free
$Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}TiO_3$ Piezoelectric Ceramics," Sens. Actuators, A, 158 [1] 84-89 (2010). https://doi.org/10.1016/j.sna.2009.12.027 -
A. Hussain, C. W. Ahn, A. Ullah, J. S. Lee, and I. W. Kim, "Effects of Hafnium Substitution on Dielectric and Electromechanical Properties of Lead-Free
$Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}- (Ti_{1-x}Hf_x)O_3$ Ceramics," Jpn. J. Appl. Phys., 49 [4] 041504 (2010). https://doi.org/10.1143/JJAP.49.041504 -
A. Ullah, C. W. Ahn, A. Hussain, S. Y. Lee, H. J. Lee, and I. W. Kim, "Phase Transitions and Large Electric Field- Induced Strain in BiAl
$O_3$ -Modified$Bi_{0.5}(Na, K)_{0.5}TiO_3$ Lead- Free Piezoelectric Ceramics," Curr. Appl. Phys., 10 [4] 1174-81 (2010). https://doi.org/10.1016/j.cap.2010.02.006 -
K.-N. Pham, A. Hussain, C. W. Ahn, W. Kim, S. J. Jeong, and J.-S. Lee, "Giant Strain in Nb-Doped
$Bi_{0.5}(Na_{0.82}K_{0.18})_{0.5}TiO_3$ Lead-Free Electromechanical Ceramics," Mater. Lett., 64 [20] 2219-22 (2010). https://doi.org/10.1016/j.matlet.2010.07.048 -
R. Dittmer, W. Jo, J. Daniels, S. Schaab, and J. Rodel, "Relaxor Characteristics of Morphotropic Phase Boundary
$(Bi_{1/2}Na_{1/2})TiO_3-(Bi_{1/2}K_{1/2})TiO_3$ Modified with$Bi(Zn_{1/2}Ti_{1/2})O_3$ ," J. Am. Ceram. Soc., 94 [12] 4283-90 (2011). https://doi.org/10.1111/j.1551-2916.2011.04631.x - W. Krauss, D. Schutz, M. Naderer, D. Orosel, and K. Reichmann, "BNT-Based Multilayer Device with Large and Temperature Independent Strain Made by a Water-Based Preparation Process," J. Eur. Ceram. Soc., 31 [9] 1857-60 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.02.032
-
F. F. Wang, M. Xu, Y. X. Tang, T. Wang, W. Z. Shi, and C. M. Leung, "Large Strain Response in the Ternary
$Bi_{0.5}Na_{0.5}- TiO_3-BaTiO_3-SrTiO_3$ Solid Solutions," J. Am. Ceram. Soc., 95 [6] 1955-59 (2012). https://doi.org/10.1111/j.1551-2916.2012.05119.x - S.-Y. Choi, S.-J. Jeong, D.-S. Lee, M.-S. Kim, J.-S. Lee, J. H. Cho, B. I. Kim, and Y. Ikuhara, "Gigantic Electrostrain in Duplex Structured Alkaline Niobates," Chem. Mater., 24 [17] 3363-69 (2012). https://doi.org/10.1021/cm301324h
-
H.-S. Han, W. Jo, J. Rodel, I.-K. Hong, W.-P. Tai, and J.-S. Lee, "Coexistence of Ergodicity and Nonergodicity in
$LaFeO_3$ - Modified$Bi_{1/2}(Na_{0.78}K_{0.22})_{1/2}TiO_3$ Relaxors," J. Phys.: Condens. Matter, 24 [36] 365901 (2012). https://doi.org/10.1088/0953-8984/24/36/365901 -
V.-Q. Nguyen, H.-S. Han, K.-J. Kim, D.-D. Dang, K.-K. Ahn, and J.-S. Lee, "Strain Enhancement in
$Bi_{1/2}(Na_{0.82}K_{0.12})_{1/2}TiO_3$ Lead-Free Electromechanical Ceramics by Co-Doping with Li and Ta," J. Alloy. Compd., 511 [1] 237-41 (2012). https://doi.org/10.1016/j.jallcom.2011.09.043 - R. Dittmer, W. Jo, E. Aulbach, T. Granzow, and J. Roodel, "Frequency-Dependence of Large-Signal Properties in Lead- Free Piezoceramics," J. Appl. Phys., 112 [1] 014101 (2012). https://doi.org/10.1063/1.4730600
-
H.-S. Han, W. Jo, J.-K. Kang, C.-W. Ahn, I. Won Kim, K.- K. Ahn, and J.-S. Lee, "Incipient Piezoelectrics and Electrostriction Behavior in Sn-Doped
$Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ Lead-Free Ceramics," J. Appl. Phys., 113 [15] 154102 (2013). https://doi.org/10.1063/1.4801893 -
H. B. Lee, D. J. Heo, R. A. Malik, C. H. Yoon, H.-S. Han, and J. S. Lee, "Lead-Free
$Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ Ceramcis Exhibiting Large Strain with Small Hysteresis," Ceram. Int., 39 [S1] S705-8 (2013). https://doi.org/10.1016/j.ceramint.2012.10.166 -
C. Groh, W. Jo, and J. Rodel, "Frequency and Temperature Dependence of Actuating Performance of
$Bi_{1/2}Na_{1/2}TiO_3- BaTiO_3$ Based Relaxor/Ferroelectric Composites," J. Appl. Phys., 115 [23] 234107 (2014). https://doi.org/10.1063/1.4876680 -
H. S. Han, I. K. Hong, Y.-M. Kong, J. S. Lee, and W. Jo, "Effect of Nb Doping on the Dielectric and Strain Properties of Lead-Free
$0.94(Bi_{1/2}Na_{1/2})TiO_3-0.06BaTiO_3$ Ceramics," J. Korean Ceram. Soc., 53 [2] 145-49 (2016). https://doi.org/10.4191/kcers.2016.53.2.145 -
M. Acosta, W. Jo, J. Rodel, and D. C. Lupascu, "Temperatureand Frequency-Dependent Properties of the
$0.75Bi_{1/2}Na_{1/2}TiO_3-0.25SrTiO_3$ Lead-Free Incipient Piezoceramic," J. Am. Ceram. Soc., 97 [6] 1937-43 (2014). https://doi.org/10.1111/jace.12884 -
D. S. Lee, D. H. Lim, M. S. Kim, K. H. Kim, and S. J. Jeong, "Electric Field-Induced Deformation Behavior in Mixed
$Bi_{0.5}Na_{0.5}TiO_3$ and$Bi_{0.5}(Na_{0.75}K_{0.25})_{0.5}TiO_3-BiAlO_3$ ," Appl. Phys. Lett., 99 [6] 062906 (2011). https://doi.org/10.1063/1.3621878 - D.-S. Lee, S. J. Jeong, M. S. Kim, and J. H. Koh, "Electric Field Induced Polarization and Strain of Bi-Based Ceramic Composites," J. Appl. Phys., 112 [12] 124109 (2012). https://doi.org/10.1063/1.4770372
- C. Groh, D. J. Franzbach, W. Jo, K. G. Webber, J. Kling, L. A. Schmitt, H. J. Kleebe, S.-J. Jeong, J.-S. Lee, and J. Rodel, "Relaxor/Ferroelectric Composites: A Solution in the Quest for Practically Viable Lead-Free Incipient Piezoceramics," Adv. Funct. Mater., 24 [3] 356-62 (2013). https://doi.org/10.1002/adfm.201302102
- H. Zhang, C. Groh, Q. Zhang, W. Jo, K. G. Webber, and J. Rodel, "Large Strain in Relaxor/Ferroelectric Composite Lead-Free Piezoceramics," Adv. Electron. Mater., 1 [6] 1500018 (2015). https://doi.org/10.1002/aelm.201500018
-
T. Takenaka, K. Sakata, and K. Toda, "Piezoelectric Properties of Bismuth Layer-Structured Ferroelectric
$Na_{0. 5}Bi_{4. 5}-Ti_4O_{15}$ Ceramic," Jpn. J. Appl. Phys., 24 [S2] 730 (1985). https://doi.org/10.7567/JJAPS.24S2.730 -
J. S. Kim, C. W. Ahn, D. S. Lee, I. W. Kim, J. S. Lee, B. M. Jin, and S. H. Bae, "An Advanced Ferroelectric Properties of the Mn Doped
$Na_{0.5}Bi_{4.5}Ti_4O_{15}$ Ceramics Fabricated by Hot-Forging Method," Ferroelectrics, 332 [1] 45-9 (2006). https://doi.org/10.1080/00150190500324527 -
C.-M. Wang, L. Zhao, J.-F. Wang, S. Zhang, and T. R. Shrout, "Enhanced Piezoelectric Properties of Sodium Bismuth Titanate (
$Na_{0.5}Bi_{4.5}Ti_4O_{15}$ ) Ceramics with B-Site Cobalt Modification," Phys. Status Solidi, 3 [1] 7-9 (2009). - F. Li, L. Jin, Z. Xu, and S. Zhang, "Electrostrictive Effect in Ferroelectrics: An Alternative Approach to Improve Piezoelectricity," Appl. Phys. Rev., 1 [1] 011103 (2014). https://doi.org/10.1063/1.4861260
-
S. Zhang, R. Xia, H. Hao, H. Liu, and T. R. Shrout, "Mitigation of Thermal and Fatigue Behavior in
$K_{0.5}Na_{0.5}NbO_3$ - Based Lead Free Piezoceramics," Appl. Phys. Lett., 92 [15] 152904-43 (2008). https://doi.org/10.1063/1.2908960
Cited by
- Dielectric and piezoelectric properties of Bi1/2Na1/2TiO3–SrTiO3 lead–free ceramics pp.1573-8663, 2018, https://doi.org/10.1007/s10832-018-0161-y
- Relaxor-ferroelectric transitions: Sodium bismuth titanate derivatives vol.43, pp.08, 2018, https://doi.org/10.1557/mrs.2018.156
- High Energy Storage Properties and Electrical Field Stability of Energy Efficiency of (Pb0.89La0.11)(Zr0.70Ti0.30)0.9725O3 Relaxor Ferroelectric Ceramics pp.2093-6788, 2019, https://doi.org/10.1007/s13391-019-00124-z
- Linear and Nonlinear Dielectric Ceramics for High-Power Energy Storage Capacitor Applications vol.56, pp.1, 2019, https://doi.org/10.4191/kcers.2019.56.1.02
- Symmetry-bridging phase as the mechanism for the large strains in relaxor-PbTiO3 single crystals vol.39, pp.11, 2017, https://doi.org/10.1016/j.jeurceramsoc.2019.04.022
- Effect of Electric Field Concentration by Electrode Patterning on the Incipient Piezoelectric Strain Properties of Lead-Free Piezoceramics vol.56, pp.6, 2019, https://doi.org/10.4191/kcers.2019.56.6.03
- TSDC 방법을 이용한 AC 폴링된 PMN-PT 단결정의 디폴링 메커니즘 분석 vol.29, pp.1, 2017, https://doi.org/10.5369/jsst.2019.29.1.59
- Progress in lead-free piezoelectric nanofiller materials and related composite nanogenerator devices vol.2, pp.8, 2017, https://doi.org/10.1039/c9na00809h
- 산화구리가 피복된 Na0.5Bi4.5Ti4O15 틀입자를 이용한 BNKT 무연 압전 세라믹스의 저온소성 연구 vol.33, pp.5, 2017, https://doi.org/10.4313/jkem.2020.33.5.337
- Bi0.5Na0.5TiO3-BiFeO3-SrTiO3 삼성분계 무연 압전 세라믹스의 강유전체-완화형 강유전체 상전이 거동 vol.34, pp.1, 2021, https://doi.org/10.4313/jkem.2021.34.1.1
- Pyroelectric Properties of BaxSr(1−x)TiO3/PVDF-TrFE Coating on Silicon vol.11, pp.8, 2017, https://doi.org/10.3390/membranes11080577