DOI QR코드

DOI QR Code

Percolative Electrical Conductivity of Platy Alumina/Few-layer Graphene Multilayered Composites

  • Choi, Ki-Beom (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jong-Young (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sung-Min (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Kyu-Hyoung (Department of Nano Applied Engineering, Kangwon National University) ;
  • Yoon, Dae Ho (Department of Materials Science and Engineering, Sungkyunkwan University)
  • 투고 : 2017.04.15
  • 심사 : 2017.05.15
  • 발행 : 2017.05.31

초록

In this work, we present a facile one-pot synthesis of a multilayer-structured platy alumina/few-layer graphene nanocomposite by planetary milling and hot pressing. The sintered composites have electrical conductivity exhibiting percolation behavior (threshold ~ 0.75 vol.%), which is much lower than graphene oxide/ceramic composites (> 3.0 vol.%). The conductivity data are well-described by the percolation theory, and the fitted exponent values are estimated to be 1.65 and 0.93 for t and q, respectively. The t and q values show conduction mechanisms intermediate between 2D- and 3D, which originates from quantum tunneling between nearest neighbored graphenes.

키워드

참고문헌

  1. J.-Y. Kim, W. H. Lee, J. W. Suk, J. R. Potts, H. Chou, I. N. Kholmanov, R. D. Piner, J. Lee, D. Akinwande, and R. S. Ruoff, "Chlorination of Reduced Graphene Oxide Enhances the Dielectric Constant of Reduced Graphene Oxide/Polymer Composites," Adv. Mater., 25 [16] 2308-13 (2013). https://doi.org/10.1002/adma.201300385
  2. I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, "Current Saturation in Zero-Bandgap, Top-Gated Graphene Field-Effect Transistors," Nat. Nanotechnol., 3 [11] 654-59 (2008). https://doi.org/10.1038/nnano.2008.268
  3. C. Liu, Z. Yu, D. Neff, A. Zhamu, and B. Z. Jang, "Graphene-Based Supercapacitor with an Ultrahigh Energy Density," Nano Lett., 10 [12] 4863-68 (2010). https://doi.org/10.1021/nl102661q
  4. H. Chang, Z. Sun, K. Y. F. Ho, X. Tao, F. Yan, W. M. Kwok, and Z. Zheng, "A Highly Sensitive Ultraviolet Sensor Based on a Facile in situ Solution-Grown ZnO Nanorod/Graphene Heterostructure," Nanoscale, 3 [1] 258-64 (2011). https://doi.org/10.1039/C0NR00588F
  5. S. Kirkpatrick, "Percolation and Conduction," Rev. Mod. Phys., 45 [4] 574-88 (1973). https://doi.org/10.1103/RevModPhys.45.574
  6. B. I. Halperin, S. Feng, and P. N. Sen, "Differences between Lattice and Continuum Percolation Transport Exponents," Phys. Rev. Lett., 54 [22] 2391-94 (1985). https://doi.org/10.1103/PhysRevLett.54.2391
  7. C. Pecharroman and J. S. Moya, "Experimental Evidence of a Giant Capacitance in Insulator-Conductor Composites at the Percolation Threshold," Adv. Mater., 12 [4] 294-97 (2000). https://doi.org/10.1002/(SICI)1521-4095(200002)12:4<294::AID-ADMA294>3.0.CO;2-D
  8. C. Ramirez, F. M. Figueiredo, P. Miranzo, P. Poza, and M. I. Osendi, "Graphene Nanoplatelet/Silicon Nitride Composites with High Electrical Conductivity," Carbon, 50 [10] 3607-15 (2012). https://doi.org/10.1016/j.carbon.2012.03.031
  9. C. Ramirez, L. Garzon, P. Miranzo, M. I. Osendi, and C. Ocal, "Electrical Conductivity Maps in Graphene Nanoplatelet/Silicon Nitride Composites Using Conducting Scanning Force Microscopy," Carbon, 49 [12] 3873-80 (2011). https://doi.org/10.1016/j.carbon.2011.05.025
  10. E. Lee, K. B. Choi, S. M. Lee, J. Y. Kim, J. Y. Jung, S. W. Baik, Y. S. Lim, S. J. Kim, and W. Shim, "A Scalable and Facile Synthesis of Alumina/Exfoliated Graphite Composites by Attrition Milling," RSC Adv., 5 [113] 93267-73 (2015). https://doi.org/10.1039/C5RA20796G
  11. H. J. Kim, S. M. Lee, Y. S. Oh, Y. H. Yang, Y. S. Lim, D. H. Yoon, C. Lee, J. Y. Kim, and R. S. Ruoff, "Unoxidized Graphene/Alumina Nanocomposite: Fracture- and Wear-Resistance Effects of Graphene on Alumina Matrix," Sci. Rep., 4 5176 (2014).
  12. Y. Fan, L. Wang, J. Li, J. Li, S. Sun, F. Chen, L. Chen, and W. Jiang, "Preparation and Electrical Properties of Graphene Nanosheet/$Al_2O_3$ Composites," Carbon, 48 [6] 1743-49 (2010). https://doi.org/10.1016/j.carbon.2010.01.017
  13. Y. Fan, W. Jiang, and A. Kawasaki, "Highly Conductive Few-Layer Graphene/$Al_2O_3$ Nanocomposites with Tunable Charge Carrier Type," Adv. Funct. Mater., 22 [18] 3882-89 (2012). https://doi.org/10.1002/adfm.201200632
  14. W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, "Preparation of Graphene by Exfoliation of Graphite Using Wet Ball Milling," J. Mater. Chem., 20 [28] 5817-19 (2010). https://doi.org/10.1039/c0jm01354d
  15. I. Y. Jeon, Y. R. Shin, G. J. Sohn, H. J. Choi, S. Y. Bae, J. Mahmood, S. M. Jung, J. M. Seo, M. J. Kim, D. W. Chang, L. Dai, and J. B. Baek, "Edge-Carboxylated Graphene Nanosheets via Ball Milling," Proc. Natl. Acad. Sci. U. S. A., 109 [15] 5588-93 (2012). https://doi.org/10.1073/pnas.1116897109
  16. V. Leon, A. M. Rodriguez, P. Prieto, M. Prato, and E. Vazquez, "Exfoliation of Graphite with Triazine Derivatives under Ball-Milling Conditions: Preparation of Few-Layer Graphene via Selective Noncovalent Interactions," ACS Nano, 8 [1] 563-71 (2014). https://doi.org/10.1021/nn405148t
  17. Y. Lv, L. Yu, C. Jiang, S. Chen, and Z. Nie, "Synthesis of Graphene Nanosheet Powder with Layer Number Control via a Soluble Salt-Assisted Route," RSC Adv., 4 [26] 13350-54 (2014). https://doi.org/10.1039/c3ra45060k
  18. C. Damm, T. J. Nacken, and W. Peukert, "Quantitative Evaluation of Delamination of Graphite by Wet Media Milling," Carbon, 81 284-94 (2015). https://doi.org/10.1016/j.carbon.2014.09.059
  19. C. Knieke, A. Berger, M. Voigt, R. N. K. Taylor, J. Rohrl, and W. Peukert, "Scalable Production of Graphene Sheets by Mechanical Delamination," Carbon, 48 [11] 3196-204 (2010). https://doi.org/10.1016/j.carbon.2010.05.003
  20. K. Ahmad, W. Pan, and S. L. Shi, "Electrical Conductivity and Dielectric Properties of Multiwalled Carbon Nanotube and Alumina Composites," Appl. Phys. Lett., 89 [13] 133122 (2006). https://doi.org/10.1063/1.2357920
  21. S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S.-E. Wu, S.-F. Chen, C. Liu, S. T. Nguyen, and R. S. Ruoff, "Graphene-Silica Composite Thin Films as Transparent Conductors," Nano Lett., 7 [7] 1888-92 (2007). https://doi.org/10.1021/nl070477+
  22. E. J. Garboczi, K. A. Snyder, J. F. Douglas, and M. F. Thorpe, "Geometrical Percolation Threshold of Overlapping Ellipsoids," Phys. Rev. E, 52 [1] 819-28 (1995). https://doi.org/10.1103/PhysRevE.52.819
  23. A. L. Efros and B. I. Shklovskii, "Critical Behaviour of Conductivity and Dielectric Constant near the Metal-Non-Metal Transition Threshold," Phys. Status Solidi B, 76 [2] 475-85 (1976). https://doi.org/10.1002/pssb.2220760205
  24. D. Stauffer and A. Aharony, Introduction to Percolation Theory; pp. 93-121, Tayler and Francis, London, 1994.
  25. Z. Rubin, S. A. Sunshine, M. B. Heaney, I. Bloom, and I. Balberg, "Critical Behavior of the Electrical Transport Properties in a Tunneling-Percolation System," Phys. Rev. B, 59 [19] 12196-99 (1999). https://doi.org/10.1103/PhysRevB.59.12196
  26. P. Sheng, E. K. Sichel, and J. I. Gittleman, "Fluctuation-Induced Tunneling Conduction in Carbonpolyvinylchloride Composites," Phys. Rev. Lett., 40 [18] 1197-200 (1978). https://doi.org/10.1103/PhysRevLett.40.1197
  27. G. Cunningham, M. Lotya, N. McEvoy, G. S. Duesberg, P. van der Schoot, and J. N. Coleman, "Percolation Scaling in Composites of Exfoliated $MoS_2$ Filled with Nanotubes and Graphene," Nanoscale, 4 [20] 6260-64 (2012). https://doi.org/10.1039/c2nr31782f

피인용 문헌

  1. Frequency-Independent and Colossal Dielectric Permittivity of Platy Alumina/Few-Layer Graphene Multilayered Composites vol.39, pp.4, 2018, https://doi.org/10.1002/bkcs.11405