참고문헌
- Benaglia, T., Chauveau, D., Hunter, D. R. and Young, D. (2009). Mixtools: An R package for analyzing finite mixture models. Journal of Statistical Software, 32, 1-29.
- Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 39, 1-38.
- Goldfeld, S. M. and Quandt, R. E. (1973). A Markov model for switching regression. Journal of Econometrics, 1, 3-15. https://doi.org/10.1016/0304-4076(73)90002-X
- Gunther, F. and Fritsch, S. (2010). Neuralnet: Training of neural networks. The R Journal, 2, 30-38.
- Huang M. and Yao, W. (2012). Mixture of regression models with varying mixing proportions: A semiparametric approach. Journal of the American Statistical Association, 107, 711-724. https://doi.org/10.1080/01621459.2012.682541
- Hwang, S., Sohn, S. H. and Oh. C. (2015). Maximum likelihood estimation for a mixure distributions. Journal of the Korean Data & Information Science Society, 26, 313-322. https://doi.org/10.7465/jkdi.2015.26.2.313
- Jacobs, R. A., Jordan, M. I., Nowlan, S. J. and Hinton, G. E. (1991). Adaptive mixtures of local experts. Neural Computation, 3, 79-87. https://doi.org/10.1162/neco.1991.3.1.79
- Jordan, M. I. and Jacobs, R. A. (1994). Hierarchical mixtures of experts and the EM algorithm. Neural Computation, 6, 181-214. https://doi.org/10.1162/neco.1994.6.2.181
- Lee, K. E. (2004). Curve clustering in microarray. Journal of the Korean Data & Information Science Society, 15, 575-584.
- Masoudnia, S. and Ebrahimpour, R. (2014). Mixture of experts: A literature survey. Artificial Intelligence Review, 42, 275-293. https://doi.org/10.1007/s10462-012-9338-y
- Oh, C. (2014). A maximum likelihood estimation method for a mixture of shifted binomial distributions. Journal of the Korean Data & Information Science Society, 25, 255-261. https://doi.org/10.7465/jkdi.2014.25.1.255
- Young, D. S. and Hunter, D. R. (2010). Mixtures of regressions with predictor-dependent mixing proportions. Computational Statistics and Data Analysis, 54, 2253-2266. https://doi.org/10.1016/j.csda.2010.04.002