References
- Akahoshi, M., Amasaki, Y., Soda, M., Hida, A., Imaizumi, M., Nashima, E., Maeda, R., Seto, S. and Yano, K. (2003). Effects of radiation on fatty liver and metabolic coronary risk factors among atomic bomb survivors in Nagasaki. Hypertension Research, 6, 965-970.
- Baron, R. M. and Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and social Psychology, 51, 1173-1182. https://doi.org/10.1037/0022-3514.51.6.1173
- Carpenter, J. and Bithell, J. (2000). Bootstrap confidence intervals: When, which, what? A practical guide for medical statisticians. Statistics in Medicine, 19, 1141-1164. https://doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
- Cohen, J. (1988). Statistical power analysis for the behavior sciences 2nd edition. Lawrence Eribaum Associates, New Jersey.
- Davison, A. C., and Hinkley, D. V. (1997).Bootstrap methods and their application. Cambridge University Press.
- Ditlevsen, S., Christensen, U., Lynch, J., Damsgaard, M. T. and Keiding, N. (2005). The mediation proportion : A structural equation approach for estimating the proportion of exposure effect on outcome explained by an intermediate variable. Epidemiology, 16, 114-120. https://doi.org/10.1097/01.ede.0000147107.76079.07
- Freedman, L. S., Graubard, B. I. and Schatzkin, A. (1992). Statistical validation of intermediate endpoints for chronic diseases. Statistics in Medicine, 11, 167-178. https://doi.org/10.1002/sim.4780110204
- Fritz, M. S. and MacKinnon, D. P. (2007). Required sample size to detect the mediated effect. Psychological science, 18, 233-239. https://doi.org/10.1111/j.1467-9280.2007.01882.x
- Hafeman, D. M. and Schwartz, S. (2009). Opening the black box: a motivation for the assessment of mediation. American Journal of Epidemiology, 38, 838-845.
- Hernan, M. A. (2004). A definition of causal effect for epidemiological research. Journal of Epidemiology and Community Health, 58, 265-271. https://doi.org/10.1136/jech.2002.006361
- Hong Y., Jang, G. and Choi, C. (2016). Life satisfaction and self-esteem of children from low-income class: Testing mediation model of depression. Journal of the Korean Data & Information Science Society, 27, 179-189. https://doi.org/10.7465/jkdi.2016.27.1.179
- Ito, C., Maeda, R., Ishida, S., Sasaki, H. and Harada, H. (2000). Correlation among fasting plasma glucose, two-hour plasma glucose levels in OGTT and HbA1c. Diabetes Research and Clinical Practice, 50, 225-230.
- Jeong, K. (2017). Quantile causality from dollar exchange rate to international oil price. Journal of the Korean Data & Information Science Society, 28, 367-369.
- Kenny, D. A. and Judd, C. M. (2014). Power anomalies in testing mediation. Psychological science, 25, 334-339. https://doi.org/10.1177/0956797613502676
- Lynch, J. W., Kaplan, G. A., Cohen, R. D., Tuomilehto, J. and Salonen, J. T. (1996). Do cardiovascular risk factors explain the relation between socioeconomic status, risk of all-cause mortality, cardiovascular mortality and acute myocardial infarction? American Journal of Epidemiology, 144, 934-942. https://doi.org/10.1093/oxfordjournals.aje.a008863
- MacKinnon, D. P. (2008). An introduction to statistical mediation analysis. Lawrence Erlbaum Associates, New York.
- Nakanishi, S., Yamada, M., Hattori, N. and Suzuki, G. (2005). Relationship between HbA(1)c and mortality in a Japanese population. Diabetologia, 48, 230-234. https://doi.org/10.1007/s00125-004-1643-9
- Ozasa, K., Shimizu, Y., Suyama, A., Kasagi, F., Soda, M., Grant, E. J., Sakata, R., Sugiyama, H. and Kodama, K. (2012). Studies of the mortality of atomic bomb survivors, Report 14, 1950-2003: An overview of cancer and noncancer diseases. Radiation Research, 177, 229-243. https://doi.org/10.1667/RR2629.1
- Pearl, J. (2001). Direct and indirect effects. In: Proceedings of the seventeenth conference on uncertainty and artificial intelligence. San Francisco, CA: Morgan Kaufmann 411-420.
- Preacher, K. J. and Kelley, K. (2011). Effect size measures for mediation models: quantitative strategies for communicating indirect effects. Psychological Methods, 16, 93-115. https://doi.org/10.1037/a0022658
- Preacher, K. J. and Selig, J. P. (2012). Advantages of Monte Carlo confidence intervals for indirect effects. Communication Methods and Measures, 6, 77-98. https://doi.org/10.1080/19312458.2012.679848
- Richiardi, L., Bellocco, R. and Zugna, D. (2013). Mediation analysis in epidemiology: methods, interpretation and bias. International Journal of Epidemiology, 42, 1511-1519. https://doi.org/10.1093/ije/dyt127
- Robin, J. M. and Greenland, S. (1992). Identifiability and exchangeability for direct and indirect effects. Epidemiology, 3, 143-155. https://doi.org/10.1097/00001648-199203000-00013
- Rubin, D. B. (1990). Formal mode of statistical inference for causal effects. Journal of Statistical Planning and Inference, 25, 279-292. https://doi.org/10.1016/0378-3758(90)90077-8
- Saito, I., Kokubo, Y., Yamagishi, K., Iso, H. and Inoue, M. (2011). Diabetes and the risk of coronary heart disease in the general Japanese population: The Japan public health center-based prospective (JPHC) study. Atherosclerosis, 216, 187-191. https://doi.org/10.1016/j.atherosclerosis.2011.01.021
- Sedlmaier, P. and Gigerenzer, G. (1989). Do studies of statistical power have an effect on the power of studies? Psychological Bulletin, 105, 309-316. https://doi.org/10.1037/0033-2909.105.2.309
- Tsiatis, A. A., DeGruttola, V. and Wulfsohn, M. S. (1995). Modeling the relationship of survival to longitudinal data measured with error: Applications to survival and CD4 counts in patients with AIDs. Journal of the American Statistical Association, 90, 27-37. https://doi.org/10.1080/01621459.1995.10476485
- Valeri, L. and VanderWeele, T. J. (2013). Mediation analysis allowing for exposure-mediator interactions and causal interpretation: Theoretical assumptions and implementation with SAS and SPSS macros. Psychological methods, 18, 137-150. https://doi.org/10.1037/a0031034
- VanderWeele, T. J. (2015). Explanation in causal inference: Methods for mediation and interaction. Oxford University Press, New York, U.S.A.
- VanderWeele, T. J. and Vansteeland, S. (2010). Odds ratios for mediation analysis for a dichotomous outcome. American Journal of Epidemiology, 172, 1339-1348. https://doi.org/10.1093/aje/kwq332
- Vittinghoff, E. and Neilands, T. B. (2015). Sample size for joint testing of indirect effects. Prevention Science, 16, 1128-1135. https://doi.org/10.1007/s11121-014-0528-5
- Vittinghoff, E. Sen, S. and McCulloch, C. E. (2009). Sample size calculations for evaluating mediation. Statistics in Medicine, 28, 541-557. https://doi.org/10.1002/sim.3491
- Wang, C. and Xue, X. (2012). Power and sample size calculations for evaluating mediation effects in longitudinal studies. Statistical methods in Medical Research, 25, 686-705.
- Wang, Y. and Taylor, J. M. G. (2002). A measure of the proportion of treatment effect explained by a surrogate marker. Biometrics, 58, 803-812. https://doi.org/10.1111/j.0006-341X.2002.00803.x
- Yamada, M., Wong, F. L., Fujiwara, S., Akahoshi, M. and Suzuki, G. (2004). Noncancer disease incidence in atomic bomb survivors, 1958-1998. Radiation Research, 161, 622-632. https://doi.org/10.1667/RR3183
- Zhang, Z. (2014). Monte Carlo based statistical power analysis for mediation models: Methods and software. Behavior Research Methods, 46, 1184-1198. https://doi.org/10.3758/s13428-013-0424-0
Cited by
- Causal mediation analysis in nested case‐control studies using conditional logistic regression vol.62, pp.8, 2017, https://doi.org/10.1002/bimj.201900120