DOI QR코드

DOI QR Code

공간패널모형을 이용한 국내 초미세먼지 농도에 대한 분석

Spatial panel analysis for PM2.5 concentrations in Korea

  • Lee, Jong Hyun (Department of Statistics, Kyungpook National University) ;
  • Kim, Young Min (Department of Statistics, Kyungpook National University) ;
  • Kim, Yongku (Department of Statistics, Kyungpook National University)
  • 투고 : 2017.03.02
  • 심사 : 2017.03.31
  • 발행 : 2017.05.31

초록

초미세먼지 (particulate matter 2.5, $PM_{2.5}$)는 분진의 입경이 2.5 이하의 보다 작은 크기의 미세한 입자들을 말하는데, 미세먼지와 달리 대기 중에서 제거가 어렵고 기도나 코 점막에서 걸러지지 않으며, 호흡 시 폐포까지 직접 침투하기 때문에 장기간 노출될 경우, 폐 기능 감소, COPD (chronic obstructive pulmonary disease) 증가, 폐암 발생증가가 있다고 알려져 있다. 현재 국내외에서 초미세먼지에 대해 다양한 연구가 이루어지고 있는데, 초미세먼지의 농도는 기상인자 (풍속, 강우량, 일사량 등)에 영향을 받는 것으로 알려져 있으며, 이산화질소, 오존, 이산화황, 미세먼지 등 대기물질의 농도에도 영향을 받는 것으로 알려져 있다. 특히 우리나라는 점차 증가하고 있는 자동차 수나 오염원으로 인한 초미세먼지외에도 중국으로부터 유입되는 초미세먼지 또한 고려되어야 하는 대상이므로 기상인자 중 풍향과 풍속 또한 어느 정도 큰 영향을 미칠 것으로 판단되며 인접 지역에 대한 영양 또한 고려되어야 할 것이다. 본 연구에서는 초미세먼지 농도에 영향을 미치는 유의한 대기물질 및 기상자료와 초미세먼지 농도의 지역적 특성을 고려한 공간자기상관 행렬에 기초한 공간패널모형을 소개하였고 이를 서울 25개 구에서 관측된 초미세먼지 자료에 적용하였다. 또한 초미세먼지와 대기오염물질의 농도를 통해 서울시에서 발생한 호흡기 질환 환자 수를 분석하여 그의 위해성을 확인하였다.

It is well known that the air quality of 92% of the world is known to exceed the standard of WTO and the death caused by air pollution is almost 6 million per year. The $PM_{2.5}$ concentration in Korea is the second most serious among the OECD countries following Turkey. Since the $PM_{2.5}$ has a direct effect on the respiratory system, it has been actively studied in domestic and foreign countries. But current research on the $PM_{2.5}$ is limited in weather factor or air pollutants. In this paper, we consider the influence of spatial neighbor with weather factor or air pollutants using spatial panel model. We applied the proposed method to 25 borough of Seoul in Korea. The result shows a significant effect of spatial neighbor on the $PM_{2.5}$ concentration fields.

키워드

참고문헌

  1. Cho, W. S. (2014) Statistical characteristics of meteorological factors and particulate matters ($PM_{10}$, $PM_{2.5}$) in Seoul, Master Thesis, Seoul National University, Seoul.
  2. Giovanni, M., Gianfranco, P. (2012) splm: Spatial panel data models in R. Journal of Statistical Software, 47, 1-38.
  3. Hwang, S. H. (2015) The effect of concentration of ultrafine particles ($PM_{2.5}$) in urban area on respiratory and circulatory diseases, Master Thesis, Yonsei University, Seoul.
  4. Jung, J. H. (2009) Study on the characteristics of $PM_{2.5}$ and its major constituents collected in Chuncheon, Master Thesis, Kangwon National University, Chuncheon.
  5. Jushan, B. and Kunpeng, L. (2013) Spatial panel data models with common shocks. MPRA Paper, University Library of Munich, Germany.
  6. Kang, C. M., Lee, H. S., Kang, B. W., Lee, S. K. and Sunwoo, Y. (2004a) Chemical characteristics of acidic gas pollutants and $PM_{2.5}$ species during hazy episodes in Seoul, South Korea. Atmospheric Environments, 38, 4749-4760. https://doi.org/10.1016/j.atmosenv.2004.05.007
  7. Kang, C. M., Sunwoo, Y., Lee, H. S., Kang, B. W. and Lee, S. K. (2004b) Atmospheric concentrations of $PM_{2.5}$ trace elements in the Seoul urban area of South Korea. Journal of the Air & Waste Management Association, 54, 432-439. https://doi.org/10.1080/10473289.2004.10470916
  8. Karppinen, A., Harkonen, J., Kukkonen, J., Aarnio, P. and Koskentalo, T. (2004) Statistical model for assessing the portion of fine particulate matter transported regionally and long range to urban air. Scandinavian Journal of Work, Environment & Health, 30, 47-53. https://doi.org/10.5271/sjweh.764
  9. Kim, C. W. (2014) Development of guideline for the prevention and management of particulate matter/Asian dust-induced health damage (Allergic diseases), Technical report, Centers for Disease Control & Prevention.
  10. Kwon, H. J. and Kim, Y. (2016) A statistical prediction for concentrations of Manganese in the ambient air. Journal of the Korean Data & Information Science Society, 27, 577-586. https://doi.org/10.7465/jkdi.2016.27.3.577
  11. Lee, H. J. (2010) Analysis of time series models for $PM_{10}$ concentrations at the Suwon city in Korea. Journal of the Korean Data & Information Science Society, 21, 1117-1124.
  12. Lee, K. B. (2015) Estimation of unknown components in $PM_{10}$ and $PM_{2.5}$ in Seoul and evaluation of contribution of pollution source, Ph.D Thesis, University of Seoul, Seoul.
  13. Liu, Y., He, K., Li, S., Wang, Z., Christiani, D. C. and Koutrakis, P. (2012) A statistical model to evaluate the effectiveness of $PM_{2.5}$ emissions control during the Beijing 2008 Olympic Games. Environment International, 44, 100-105. https://doi.org/10.1016/j.envint.2012.02.003
  14. Na, Y. and Kim, Y. (2016) A spatial panel regression model for household final consumption expenditure based on KTX effects. Journal of the Korean Data & Information Science Society, 27, 1147-1154. https://doi.org/10.7465/jkdi.2016.27.5.1147
  15. Yang, H. j., Kim, S. H., Jang, A. S., Kim, S. H., Song, W. J., Kim, T. B., Ye, Y. M., Yoo, Y., Yu, J., Yoon, J. S. and Jee, H. M. (2015) Guideline for the prevention and management of particulate matter/yellow dust-induced adverse health effects on the patients with bronchial asthma. Journal of the Korean Medical Association, 58, 1034-1043. https://doi.org/10.5124/jkma.2015.58.11.1034