DOI QR코드

DOI QR Code

Pyroeffects on Magneto-Electro-Elastic Sensor patch subjected to thermal load

  • Kondaiah, P. (Department of Mechanical Engineering, School of Engineering Science, Mahindra Ecole Centrale) ;
  • Shankar, K. (Machine Design Section, Department of Mechanical Engineering, Indian Institute of Technology Madras)
  • Received : 2016.02.29
  • Accepted : 2016.07.14
  • Published : 2017.03.25

Abstract

The magneto-electro-elastic (MEE) material under thermal environment exhibits pyroelectric and pyromagnetic coefficients resulting in pyroelectric and pyromagnetic effects. The pyroelectric and pyromagnetic effects on the behavior of multiphase MEE sensors bonded on top surface of a mild steel beam under thermal environment is presented in this paper. The aim of the study is to find out how samples having different volume fractions of the multiphase MEE composite behave in sensor applications. This is studied at optimal location on the beam, where the maximum electric and magnetic potentials are induced due to pyroelectric and pyromagnetic effects under clamped-free and clamped-clamped boundary conditions. The sensor which is bonded on the top surface of the beam is modeled using 8-node brick element. The MEE sensor bonded on mild steel beam is subjected to uniform temperature rise of 50K. It is assumed that beam and sensor is perfectly bonded to each other. The maximum pyroelectric and pyromagnetic effects on electric and magnetic potentials are observed when volume fraction is ${\nu}_f=0.2$. The boundary conditions significantly influence the pyroelectric and pyromagnetic effects on electric and magnetic potentials.

Keywords

References

  1. Aboudi, J. (2001), "Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites", Smart Mater. Struct., 10(5), 867-877. https://doi.org/10.1088/0964-1726/10/5/303
  2. Biju, B., Ganesan, N. and Shankar, K. (2011), "Dynamic response of multiphase magneto-electro-elastic sensors using 3D magnetic vector potential approach", IEEE Sens. J., 11(9), 2169-2176. https://doi.org/10.1109/JSEN.2011.2112346
  3. Bravo-Castillero, J., Rodriguez-Ramos, R., Mechkour, H., Otero, J. and Sabina, F.J. (2008), "Homogenization of magnetoelectro-elastic multilaminated materials", Q. J. Mech. Appl. Math., 61(3), 311-322. https://doi.org/10.1093/qjmam/hbn010
  4. Chen, J., Pan, E. and Chen, H. (2007), "Wave propagation in magneto-electro-elastic multilayered plates", Int. J. Solids Struct., 44(3), 1073-1085. https://doi.org/10.1016/j.ijsolstr.2006.06.003
  5. Ganesan, N., Kumaravel, A. and Raju Sethuraman (2007), "Finite element modeling of a layered, multiphase magnetoelectroelastic cylinder subjected to an axisymmetric temperature distribution", J. Mech. Mater. Struct., 2(4), 655-674. https://doi.org/10.2140/jomms.2007.2.655
  6. Gao, C.F. and Noda, N. (2004), "Thermal-induced interfacial cracking on magnetoelectroelastic materials", Int. Eng. Sci., 42(13), 1347-1360. https://doi.org/10.1016/j.ijengsci.2004.03.005
  7. Guiffard B., Zhang, J.W., Guyomar, D., Garbuio, L., Cottinet, P.J. and Belouadah, R. (2010), "Magnetic field sensing with a single piezoelectric ceramic disk: Experiments and modeling", J. Appl. Phys., 108(9), 094901. https://doi.org/10.1063/1.3503424
  8. Hadjiloizi, D.A., Georgiades, A.V., Kalamkarov, A.L. and Jothi, S. (2013a), "Micromechanical modeling of Piezo-Magneto-Thermo-Elastic composite structures: Part I - Theory", Eur. J. Mech. A. Solids, 39, 298-312. https://doi.org/10.1016/j.euromechsol.2012.11.009
  9. Hadjiloizi, D.A., Georgiades, A.V., Kalamkarov, A.L. and Jothi, S. (2013b), "Micromechanical modeling of Piezo-Magneto-Thermo-Elastic composite structures: Part II - Theory", Eur. J. Mech. A. Solids, 39, 313-327. https://doi.org/10.1016/j.euromechsol.2012.11.003
  10. Hou, P.F., Andrew-Y.T. Leung and Hao-Jiang, Ding (2008), "A point heat source on the surface of a semi-infinite transversely isotropic electro-magneto-thermo-elastic material", Int. J. Eng. Sci., 46(3), 273-285. https://doi.org/10.1016/j.ijengsci.2007.11.006
  11. Jiang, J.P. and Li, D.X. (2007), "A new finite element model for piezothermoelastic composite beam", J. Sound Vib., 306(3), 849-864. https://doi.org/10.1016/j.jsv.2007.06.023
  12. Kalamkarov, A.L., I. Andrianov and Vladyslav V. Danishevs'kyy (2009), "Asymptotic homogenization of composite materials and structures", Appl. Mech. Rev., 62(3), 030802. https://doi.org/10.1115/1.3090830
  13. Kalamkarov, A.L. (2014), "Asymptotic homogenization method and micromechanical models for composite materials and thinwalled composite structures", Chapter 1 in Mathematical Methods and Models in Composites, Imperial College Press, London.
  14. Melvin M. Vopson (2013), "Theory of giant-caloric effects in multiferroic materials", J. Phys. D: Appl. Phys., 46(34), 345304. https://doi.org/10.1088/0022-3727/46/34/345304
  15. Nan, C.W., Bichurin, M.I., Shuxiang Dong, Viehland, D. and Srinivasan, G. (2008), "Multiferroic magnetoelectric composites: Historical perspective, status, and future directions", J. Appl. Phys., 103(3), 1-35.
  16. Ootao, Y. and Ishihara, M. (2011), "Exact solution of transient thermal stress problem of the multilayered magneto-electrothermoelastic hallow cylinder", J. Solid Mech. Mater. Eng., 5(2), 90-103. https://doi.org/10.1299/jmmp.5.90
  17. Pan, E. (2001), "Exact solution for simply supported and multilayered magneto-electro-elastic plates", J. Appl. Mech., ASME, 68(4), 608-618. https://doi.org/10.1115/1.1380385
  18. Pan, E. and Wang, R. (2009), "Effects of geometric size and mechanical boundary conditions on magnetoelectric coupling in multiferroic composites", J. Phys. D: Appl. Phys., 42(24), 245503. https://doi.org/10.1088/0022-3727/42/24/245503
  19. Pan, E. (2002), "Three-dimensional Green's functions in anisotropic magneto-electro-elastic biomaterials", J. Appl. Math. Phys. (ZAMP), 53(5), 815-838. https://doi.org/10.1007/s00033-002-8184-1
  20. Pan, E. and Chen, W.Q. (2015), Static Green's Functions in Anisotropic Media, Cambridge University Press, New York, USA.
  21. Priya, S., Rashed Islam, Shuxiang Dong and D. Viehland (2007), "Recent advancements in magnetoelectric particulate and laminate composites", J. Electroceram, 19(1), 147-164.
  22. Soh, A.K. and Liu, J.X. (2005), "On the constitutive equations of magnetoelectroelastic solids", J. Intel. Mater. Syst. Struct., 16(7-8), 597-602. https://doi.org/10.1177/1045389X05051630
  23. Sunar, M., Al-Garni, A.Z., Ali, M.H. and Kahraman, R. (2002), "Finite element modeling of thermopiezomagnetic smart structures", AIAA J., 40(9), 1846-1851. https://doi.org/10.2514/2.1862
  24. Wu, T.L. and Huang, J.H. (2000), "Closed-form solutions for the magneto-electric coupling coefficients in Fibrous composites with piezoelectric and piezomagnetic phases", Int. J. Solid. Struct., 37(21), 2981-3009. https://doi.org/10.1016/S0020-7683(99)00116-X

Cited by

  1. Buckling analysis of skew magneto-electro-elastic plates under in-plane loading vol.29, pp.10, 2018, https://doi.org/10.1177/1045389X18758191
  2. A 3D finite element static and free vibration analysis of magneto-electro-elastic beam vol.6, pp.4, 2017, https://doi.org/10.12989/csm.2017.6.4.465
  3. Free vibration and static analysis of functionally graded skew magneto-electro-elastic plate vol.21, pp.4, 2017, https://doi.org/10.12989/sss.2018.21.4.493
  4. Assessment of Vibrational Frequencies and Static Characteristics of Multilayered Skew Magneto-Electro-Elastic Plates: A Finite Element Study vol.44, pp.1, 2020, https://doi.org/10.1007/s40997-018-0250-1
  5. Exact solutions to magneto-electro-thermo-elastic fields for a cracked cylinder composite during thermal shock vol.16, pp.1, 2017, https://doi.org/10.1007/s10999-019-09456-y