DOI QR코드

DOI QR Code

Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT

  • 투고 : 2016.10.31
  • 심사 : 2016.12.08
  • 발행 : 2017.03.25

초록

This work presents a simplified higher order shear deformation theory (HSDT) for thermal buckling analysis of cross-ply laminated composite plates. Unlike the existing HSDT, the present one has a new displacement field which introduces undetermined integral terms and contains only four unknowns. Governing equations are derived from the principle of the minimum total potential energy. The validity of the proposed theory is evaluated by comparing the obtained results with their counterparts reported in literature. It can be concluded that the proposed HSDT is accurate and simple in solving the thermal buckling behavior of laminated composite plates.

키워드

참고문헌

  1. Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
  2. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  3. Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369
  4. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  5. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  6. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  7. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  8. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  9. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  10. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  11. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  12. Bouazza, M., Lairedj, A., Benseddiq, N., Khalki, S. (2016), "A refined hyperbolic shear deformation theory for thermal buckling analysis of cross-ply laminated plates", Mech. Res. Commun., 73, 117-126. https://doi.org/10.1016/j.mechrescom.2016.02.015
  13. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  14. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  15. Boukhari, A., Ait Atmane, H., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
  16. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  17. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  18. Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., 21(6), 1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287
  19. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  20. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
  21. Brush, D.O. and Almroth, B.O. (1975), Buckling of bars, plates, and shells, New York: McGraw-Hill.
  22. Carrera, E. (2003), "Historical review of zig-zag theories for multilayered plates and shells", Appl. Mech. Rev., 56(3), 287-308. https://doi.org/10.1115/1.1557614
  23. Demasi, L. (2008), "13 hierarchy plate theories for thick and thin composite plates: the generalized unified formulation", Compos. Struct., 84(3), 256-270. https://doi.org/10.1016/j.compstruct.2007.08.004
  24. Demasi, L. (2009a), "16 mixed plate theories based on the generalized unified formulation. Part I: governing equations", Compos. Struct., 87(1), 1-11. https://doi.org/10.1016/j.compstruct.2008.07.013
  25. Demasi, L. (2009b), "16 mixed plate theories based on the generalized unified formulation. Part II: layerwise theories", Compos. Struct., 87(1), 12-22. https://doi.org/10.1016/j.compstruct.2008.07.012
  26. Demasi, L. (2009c), "16 mixed plate theories based on the generalized unified formulation. Part III: advanced mixed high order shear deformation theories", Compos. Struct., 87(3), 183-194. https://doi.org/10.1016/j.compstruct.2008.07.011
  27. Demasi, L. (2009d), "16 mixed plate theories based on the generalized unified formulation. Part IV: zig-zag theories", Compos. Struct., 87(3), 195-205. https://doi.org/10.1016/j.compstruct.2008.07.010
  28. Demasi, L. (2009e), "16 mixed plate theories based on the generalized unified formulation. Part V: results", Compos. Struct., 88, 1-16. https://doi.org/10.1016/j.compstruct.2008.07.009
  29. Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., 17(1), 69-81. https://doi.org/10.12989/scs.2014.17.1.069
  30. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671
  31. Ebrahimi, F. and Dashti, S. (2015), "Free vibration analysis of a rotating non-uniform functionally graded beam", Steel Compos. Struct., 19(5), 1279-1298. https://doi.org/10.12989/scs.2015.19.5.1279
  32. El-Hassar, S.M., Benyoucef, S., Heireche, H. and Tounsi, A. (2016), "Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory", Geomech. Eng., 10(3), 357-386. https://doi.org/10.12989/gae.2016.10.3.357
  33. Ghugal, Y.M. and Shimpi, R.P. (2002), "A review of refined shear deformation theories for isotropic and anisotropic laminated plates", J. Reinf. Plast. Compos., 21(9), 775-813. https://doi.org/10.1177/073168402128988481
  34. Grover, N., Maiti, D.K. and Singh, B.N. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos. Struct., 95, 667-675. https://doi.org/10.1016/j.compstruct.2012.08.012
  35. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  36. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., ASCE, 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  37. Hebali, H., Bakora, A., Tounsi, A. and Kaci, A. (2016), "A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates", Steel Compos. Struct., 22(3), 473-495. https://doi.org/10.12989/scs.2016.22.3.473
  38. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three -unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257
  39. Kar, V.R. and Panda, S.K. (2014), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., 53(4), 661-679. https://doi.org/10.12989/SEM.2015.53.4.661
  40. Kar, V.R. and Panda, S.K. (2015a), "Free vibration responses of temperature dependent functionally graded curved panels under thermal environment", Lat. Am. J. Solids Struct., 12(11), 2006-2024. https://doi.org/10.1590/1679-78251691
  41. Kar, V.R. and Panda, S.K. (2015b), "Thermoelastic analysis of functionally graded doubly curved shell panels using nonlinear finite element method", Compos. Struct., 129, 202-212. https://doi.org/10.1016/j.compstruct.2015.04.006
  42. Kar, V.R. and Panda, S.K. (2016a), "Nonlinear thermomechanical behavior of functionally graded material cylindrical/hyperbolic/elliptical shell panel with temperaturedependent and temperature-independent properties", J. Press. Vessel Technol., 138(6), 061202. https://doi.org/10.1115/1.4033701
  43. Kar, V.R. and Panda, S.K. (2016b), "Post-buckling analysis of shear deformable FG shallow spherical shell panel under uniform and non-uniform thermal environment", J. Therm. Stress., 1-15.
  44. Kar, V.R. and Panda, S.K. (2016c), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech. Sci., 115, 318-324.
  45. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2016), "Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 1236-1247.
  46. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygrothermo-mechanical loading", Steel Compos. Struct., 19(4), 1011-1033. https://doi.org/10.12989/scs.2015.19.4.1011
  47. Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behavior of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity", Int. J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
  48. Karama, M., Afaq, K.S. and Mistou, S. (2009), "A new theory for laminated composite plates", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 223(2), 53-62. https://doi.org/10.1243/14644207JMDA189
  49. Katariya, P.V. and Panda, S.K. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircraft Eng. Aerosp. Technol., 88(1), 97-107. https://doi.org/10.1108/AEAT-11-2013-0202
  50. Kreja, I. (2011), "A literature review on computational models for laminated composite and sandwich panels", Cent. Eur. J. Eng., 1(1), 59-80. https://doi.org/10.2478/s13531-011-0005-x
  51. Mahapatra, T.R. and Panda, S.K. (2015), "Thermoelastic vibration analysis of laminated doubly curved shallow panels using nonlinear FEM", J. Therm. Stress., 38(1), 39-68. https://doi.org/10.1080/01495739.2014.976125
  52. Mahapatra, T.R., Kar, V.R. and Panda, S.K. (2015a), "Nonlinear free vibration analysis of laminated composite doubly curved shell panel in hygrothermal environment", J. Sandw. Struct. Mater., 17(5), 511-545. https://doi.org/10.1177/1099636215577363
  53. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2015b), "Geometrically nonlinear flexural analysis of hygro-thermoelastic laminated composite doubly curved shell panel", Int. J. Mech. Mater. Des., 12(2), 153-171.
  54. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016a), "Large amplitude vibration analysis of laminated composite spherical panels under hygrothermal environment", Int. J. Struct. Stab. Dyn., 16(2), 1450105. https://doi.org/10.1142/S0219455414501053
  55. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016b), "Nonlinear flexural analysis of laminated composite panel under hygrothermo-mechanical loading - A micromechanical approach", Int. J. Comput. Meth., 13(3), 1650015. https://doi.org/10.1142/S0219876216500158
  56. Mahapatra, T.R. and Panda, S.K. (2016), "Nonlinear free vibration analysis of laminated composite spherical shell panel under elevated hygrothermal environment: A micromechanical approach", Aerosp. Sci. Technol., 49, 276-288. https://doi.org/10.1016/j.ast.2015.12.018
  57. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  58. Mallikarjuna, Kant, T. (1993), "A critical review and some results of recently developed refined theories of fiber-reinforced laminated composites and sandwiches", Compos. Struct., 23(4), 293-312. https://doi.org/10.1016/0263-8223(93)90230-N
  59. Matsunaga, H. (2005), "Thermal buckling of cross ply laminated composite and sandwich plates according to a global higher order deformation theory", Compos. Struct., 68(4), 439-454. https://doi.org/10.1016/j.compstruct.2004.04.010
  60. Mehar, K. and Panda, S.K. (2016a), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. https://doi.org/10.1016/j.compstruct.2016.02.038
  61. Mehar, K. and Panda, S.K. (2016b), "Thermoelastic analysis of FG-CNT reinforced shear deformable composite plate under various loadings", Int. J. Comput. Meth., 1750019.
  62. Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324
  63. Mehar, K. and Panda, S.K. (2017), "Numerical investigation of nonlinear thermomechanical deflection of functionally graded CNT reinforced doubly curved composite shell panel under different mechanical loads", Compos. Struct., 161, 287-298. https://doi.org/10.1016/j.compstruct.2016.10.135
  64. Meradjah, M., Kaci, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2015), "A new higher order shear and normal deformation theory for functionally graded beams", Steel Compos. Struct., 18(3), 793-809. https://doi.org/10.12989/scs.2015.18.3.793
  65. Merdaci, S., Tounsi, A. and Bakora, A. (2016), "A novel four variable refined plate theory for laminated composite plates", Steel Compos. Struct., 22(4), 713-732. https://doi.org/10.12989/scs.2016.22.4.713
  66. Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic elastic plates", J. Appl. Mech., Trans ASME, 18(1), 31-38.
  67. Nedri, K., El Meiche, N. and Tounsi, A. (2014), "Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory", Mech. Compos. Mater., 49(6), 629-640. https://doi.org/10.1007/s11029-013-9379-6
  68. Nguyen, K.T., Thai, T.H. and Vo, T.P. (2015), "A refined higherorder shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 91-120. https://doi.org/10.12989/scs.2015.18.1.091
  69. Noor, A.K. and Burton, W.S. (1989), "Refinement of higher-order laminated plate theories", Appl. Mech. Rev., 42(1), 1-13. https://doi.org/10.1115/1.3152418
  70. Noor, A.K. and Burton, W.S. (1992), "Three-dimensional solutions for thermal buckling multilayered anisotropic plates", J. Eng. Mech., 118(4), 683-701. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:4(683)
  71. Panda, S.K. and Singh, B.N. (2009), "Thermal post-buckling behaviour of laminated composite cylindrical/hyperboloid shallow shell panel using nonlinear finite element method", Compos. Struct., 91(3), 366-374. https://doi.org/10.1016/j.compstruct.2009.06.004
  72. Panda, S.K. and Singh, B.N. (2010a), "Thermal post-buckling analysis of a laminated composite spherical shell panel embedded with shape memory alloy fibres using non-linear finite element method", Proc. IMechE Part C: J. Mech. Eng. Sci., 224(4), 757-769.
  73. Panda, S.K. and Singh, B.N. (2010b), "Nonlinear free vibration analysis of thermally post-buckled composite spherical shell panel", Int. J. Mech. Mater. Des., 6(2), 175-188. https://doi.org/10.1007/s10999-010-9127-1
  74. Panda, S.K. and Singh, B.N. (2011), "Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel using nonlinear FEM", Finite Element. Anal. Des., 47(4), 378-386. https://doi.org/10.1016/j.finel.2010.12.008
  75. Panda, S.K. and Singh, B.N. (2013a), "Post-buckling analysis of laminated composite doubly curved panel embedded with SMA fibers subjected to thermal environment", Mech. Adv. Mater. Struct., 20(10), 842-853. https://doi.org/10.1080/15376494.2012.677097
  76. Panda, S.K. and Singh, B.N. (2013b), "Thermal postbuckling behavior of laminated composite spherical shell panel using NFEM", Mech. Based Des. Struct. Machines, 41(4), 468-488. https://doi.org/10.1080/15397734.2013.797330
  77. Panda, S.K. and Singh, B.N. (2013c), "Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with SMA fibre", Aerosp. Sci. Technol., 29(1), 47-57. https://doi.org/10.1016/j.ast.2013.01.007
  78. Panda, S.K. and Singh, B.N. (2013d), "Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel embedded with SMA fibers", Nonlin. Dyn., 74(1), 395-418. https://doi.org/10.1007/s11071-013-0978-5
  79. Panda, S.K. and Katariya, P.V. (2015), "Stability and free vibration behaviour of laminated composite panels under thermo-mechanical loading", Int. J. Appl. Comput. Math., 1(3), 475-490. https://doi.org/10.1007/s40819-015-0035-9
  80. Pandit, M.K., Sheikh, A.H. and Singh, B.N. (2010), "Analysis of laminated sandwich plates based on an improved higher order zigzag theory", J. Sandw. Struct. Mat., 12, 307-326. https://doi.org/10.1177/1099636209104517
  81. Panjehpour, M., Farzadnia, N., Anwar, M.P. and Ali, A.A.A. (2011), "FRP sheets contribution in common repair techniques of concrete structures with emphasis on concrete columns", Int. J. Sustain. Constr. Eng. Technol., 2(2), 54-61.
  82. Panjehpour, M., Farzadnia, N., Demirboga, R. and Ali, A.A.A. (2016), "Behavior of high-strength concrete cylinders repaired with CFRP sheets", J. Civ. Eng. Manage., 22(1), 56-64. https://doi.org/10.3846/13923730.2014.897965
  83. Pradhan, K.K. and Chakraverty, S. (2015), "Free vibration of functionally graded thin elliptic plates with various edge supports", Struct. Eng. Mech., 53(2), 337-354. https://doi.org/10.12989/sem.2015.53.2.337
  84. Reddy, J.N. and Arciniega, R.A. (2004), "Shear deformation plate and shell theories: from Stavsky to present", Mech. Adv. Mater. Struct., 11(6), 535-582. https://doi.org/10.1080/15376490490452777
  85. Reddy, J.N. (1984a), "A simple higher order theory for laminated composite plates", ASME J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
  86. Reddy, J.N. (1997), Mechanics of laminated composite plate: theory and analysis, New York: CRC Press.
  87. Reddy, J.N. (1984b), Energy principles and variational methods in applied mechanics, New York: John Wiley.
  88. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., Trans ASME, 12(2), 69-77.
  89. Reissner, E. (1985), "Reflection on the theory of elastic plates", Appl. Mech. Rev., 38(11), 1453-1464. https://doi.org/10.1115/1.3143699
  90. Saidi, H., Tounsi, A. and Bousahla, A.A. (2016), "A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations", Geomech. Eng., 11(2), 289-307. https://doi.org/10.12989/gae.2016.11.2.289
  91. Sayyad, A.S. and Ghugal, Y.M. (2012a), "Bending and free vibration analysis of thick isotropic plates by using exponential shear deformation theory", Appl. Comput. Mech., 6(1), 65-82.
  92. Sayyad, A.S. and Ghugal, Y.M. (2012b), "Buckling analysis of thick isotropic plates by using exponential shear deformation theory", Appl. Comput. Mech., 6(2), 185-196.
  93. Sayyad, A.S. (2013), "Flexure of thick orthotropic plates by exponential shear deformation theory", Lat. Am. J. Solids Struct., 10(3), 473-490. https://doi.org/10.1590/S1679-78252013000300002
  94. Shiau, L.C., Kuo, S.Y. and Chen, C.Y. (2010), "Thermal buckling behavior of composite laminated plates", Compos. Struct., 92(2), 508-514. https://doi.org/10.1016/j.compstruct.2009.08.035
  95. Singh, S., Singh, J. and Shukla, K.K. (2013), "Buckling of laminated composite plates subjected to mechanical and thermal loads using meshless collocations", J. Mech. Sci. Technol., 27(2), 327-336. https://doi.org/10.1007/s12206-012-1249-y
  96. Singh, V.K. and Panda, S.K. (2015), "Large amplitude free vibration analysis of laminated composite spherical shells embedded with piezoelectric layers", Smart Struct. Syst., 16(5), 853-872. https://doi.org/10.12989/sss.2015.16.5.853
  97. Shooshtari, A. and Razavi, S. (2010), "A closed form solution for linear and nonlinear free vibrations of composite and fiber metal laminated rectangular plates", Compos. Struct., 92(11), 2663-2675. https://doi.org/10.1016/j.compstruct.2010.04.001
  98. Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94(3), 195-220. https://doi.org/10.1007/BF01176650
  99. Sturzenbecher, R. and Hofstetter, K. (2011), "Bending of cross-ply laminated composites: an accurate and efficient plate theory based upon models of Lekhnitskii and Ren", Compos. Struct., 93(3), 1078-1088. https://doi.org/10.1016/j.compstruct.2010.09.020
  100. Tebboune, W., Benrahou, K.H., Houari, M.S.A. and Tounsi, A. (2015), "Thermal buckling analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric shear deformation theory", Steel Compos. Struct., 18(2), 443-465. https://doi.org/10.12989/scs.2015.18.2.443
  101. Thangaratnam, K.R. and Palaninathan, Ramachandran, J. (1989), "Thermal buckling of composite laminated plates", Comput. Struct., 32(5), 1117-1124. https://doi.org/10.1016/0045-7949(89)90413-6
  102. Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., 60(4), 547-565. https://doi.org/10.12989/sem.2016.60.4.547
  103. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  104. Versino, D., Gherlone, M., Mattone, M., Sciuva, M.D. and Tessler, A. (2013), "C0 triangular elements based on the Refined Zigzag Theory for multilayer composite and sandwich plates", Compos. B, 44(1), 218-230. https://doi.org/10.1016/j.compositesb.2012.05.026
  105. Wanji, C. and Zhen, W. (2008), "A selective review on recent development of displacement-based laminated plate theories", Recent Pat. Mech. Eng., 1(1), 29-44. https://doi.org/10.2174/2212797610801010029
  106. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

피인용 문헌

  1. Buckling analysis of nonuniform nonlocal strain gradient beams using generalized differential quadrature method 2018, https://doi.org/10.1016/j.aej.2017.06.001
  2. Eigenvalue approach to two dimensional coupled magneto-thermoelasticity in a rotating isotropic medium vol.7, 2017, https://doi.org/10.1016/j.rinp.2017.07.053
  3. A general higher-order nonlocal couple stress based beam model for vibration analysis of porous nanocrystalline nanobeams vol.112, 2017, https://doi.org/10.1016/j.spmi.2017.09.010
  4. A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation vol.72, 2018, https://doi.org/10.1016/j.ast.2017.11.004
  5. Eigenvalue approach to coupled thermoelasticity in a rotating isotropic medium vol.8, 2018, https://doi.org/10.1016/j.rinp.2017.09.021
  6. Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO 2 nanoparticles and fiber reinforced polymer (FRP) layer vol.103, 2017, https://doi.org/10.1016/j.soildyn.2017.09.009
  7. Dynamic buckling of polymer–carbon nanotube–fiber multiphase nanocomposite viscoelastic laminated conical shells in hygrothermal environments 2017, https://doi.org/10.1177/1099636217743288
  8. A new non-polynomial four variable shear deformation theory in axiomatic formulation for hygro-thermo-mechanical analysis of laminated composite plates vol.182, 2017, https://doi.org/10.1016/j.compstruct.2017.09.029
  9. Size-dependent electro-magneto-elastic bending analyses of the shear-deformable axisymmetric functionally graded circular nanoplates vol.132, pp.10, 2017, https://doi.org/10.1140/epjp/i2017-11666-6
  10. Thermal Effects on the Vibration of Functionally Graded Deep Beams with Porosity vol.09, pp.05, 2017, https://doi.org/10.1142/S1758825117500764
  11. Vibro-acoustic behaviour of shear deformable laminated composite flat panel using BEM and the higher order shear deformation theory vol.180, 2017, https://doi.org/10.1016/j.compstruct.2017.08.012
  12. Effect of Longitudinal Magnetic Field on Vibration Characteristics of Single-Walled Carbon Nanotubes in a Viscoelastic Medium vol.47, pp.6, 2017, https://doi.org/10.1007/s13538-017-0524-x
  13. Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.052
  14. Bending, buckling and vibration analyses of MSGT microcomposite circular-annular sandwich plate under hydro-thermo-magneto-mechanical loadings using DQM 2017, https://doi.org/10.1080/19475411.2017.1377312
  15. Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects vol.187, 2018, https://doi.org/10.1016/j.compstruct.2017.12.004
  16. Buckling optimization of variable-stiffness composite panels based on flow field function vol.181, 2017, https://doi.org/10.1016/j.compstruct.2017.08.081
  17. Buckling Analysis of Orthotropic Nanoscale Plates Resting on Elastic Foundations vol.55, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.55.42
  18. Nonlinear static response analysis of sandwich beams using the Refined Zigzag Theory pp.1530-7972, 2018, https://doi.org/10.1177/1099636218795381
  19. Vibration and buckling analysis of a rotary functionally graded piezomagnetic nanoshell embedded in viscoelastic media vol.29, pp.11, 2018, https://doi.org/10.1177/1045389X18770856
  20. Thermodynamic effect on the bending response of elastic foundation FG plate by using a novel four variable refined plate theory vol.41, pp.8, 2018, https://doi.org/10.1080/01495739.2018.1452169
  21. Application of nonlocal strain gradient theory and various shear deformation theories to nonlinear vibration analysis of sandwich nano-beam with FG-CNTRCs face-sheets in electro-thermal environment vol.123, pp.5, 2017, https://doi.org/10.1007/s00339-017-0922-5
  22. A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams vol.62, pp.6, 2017, https://doi.org/10.12989/sem.2017.62.6.695
  23. A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.569
  24. Free vibrations of laminated composite plates using a novel four variable refined plate theory vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.603
  25. Dynamic bending response of SWCNT reinforced composite plates subjected to hygro-thermo-mechanical loading vol.20, pp.2, 2017, https://doi.org/10.12989/cac.2017.20.2.229
  26. An original single variable shear deformation theory for buckling analysis of thick isotropic plates vol.63, pp.4, 2017, https://doi.org/10.12989/sem.2017.63.4.439
  27. A simple analytical approach for thermal buckling of thick functionally graded sandwich plates vol.63, pp.5, 2017, https://doi.org/10.12989/sem.2017.63.5.585
  28. An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities vol.13, pp.3, 2017, https://doi.org/10.12989/eas.2017.13.3.255
  29. A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2017, https://doi.org/10.12989/gae.2017.13.3.385
  30. Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory vol.20, pp.3, 2017, https://doi.org/10.12989/sss.2017.20.3.369
  31. A new and simple HSDT for thermal stability analysis of FG sandwich plates vol.25, pp.2, 2017, https://doi.org/10.12989/scs.2017.25.2.157
  32. Vibro-acoustic analysis of un-baffled curved composite panels with experimental validation vol.64, pp.1, 2017, https://doi.org/10.12989/sem.2017.64.1.093
  33. A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams vol.64, pp.2, 2017, https://doi.org/10.12989/sem.2017.64.2.145
  34. Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory vol.20, pp.4, 2017, https://doi.org/10.12989/sss.2017.20.4.509
  35. An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates vol.25, pp.3, 2017, https://doi.org/10.12989/scs.2017.25.3.257
  36. A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.389
  37. A simple quasi-3D sinusoidal shear deformation theory with stretching effect for carbon nanotube-reinforced composite beams resting on elastic foundation vol.13, pp.5, 2017, https://doi.org/10.12989/eas.2017.13.5.509
  38. A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates vol.64, pp.4, 2017, https://doi.org/10.12989/sem.2017.64.4.391
  39. Vibration analysis of micro composite thin beam based on modified couple stress vol.64, pp.4, 2017, https://doi.org/10.12989/sem.2017.64.4.403
  40. A new quasi-3D HSDT for buckling and vibration of FG plate vol.64, pp.6, 2017, https://doi.org/10.12989/sem.2017.64.6.737
  41. An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions vol.25, pp.6, 2017, https://doi.org/10.12989/scs.2017.25.6.693
  42. An original HSDT for free vibration analysis of functionally graded plates vol.25, pp.6, 2017, https://doi.org/10.12989/scs.2017.25.6.735
  43. Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory vol.65, pp.5, 2017, https://doi.org/10.12989/sem.2018.65.5.621
  44. Post-buckling responses of a laminated composite beam vol.26, pp.6, 2017, https://doi.org/10.12989/scs.2018.26.6.733
  45. Development of super convergent Euler finite elements for the analysis of sandwich beams with soft core vol.65, pp.6, 2017, https://doi.org/10.12989/sem.2018.65.6.657
  46. A novel four variable refined plate theory for wave propagation in functionally graded material plates vol.27, pp.1, 2018, https://doi.org/10.12989/scs.2018.27.1.109
  47. Geometrically nonlinear analysis of a laminated composite beam vol.66, pp.1, 2017, https://doi.org/10.12989/sem.2018.66.1.027
  48. Improved HSDT accounting for effect of thickness stretching in advanced composite plates vol.66, pp.1, 2017, https://doi.org/10.12989/sem.2018.66.1.061
  49. Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects vol.21, pp.4, 2018, https://doi.org/10.12989/cac.2018.21.4.431
  50. Three dimensional dynamic response of functionally graded nanoplates under a moving load vol.66, pp.2, 2017, https://doi.org/10.12989/sem.2018.66.2.249
  51. A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory vol.21, pp.4, 2017, https://doi.org/10.12989/sss.2018.21.4.397
  52. Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates vol.14, pp.6, 2017, https://doi.org/10.12989/gae.2018.14.6.519
  53. Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory vol.27, pp.3, 2018, https://doi.org/10.12989/scs.2018.27.3.311
  54. Analytical investigation of bending response of FGM plate using a new quasi 3D shear deformation theory: Effect of the micromechanical models vol.66, pp.3, 2018, https://doi.org/10.12989/sem.2018.66.3.317
  55. Free vibration of FGM plates with porosity by a shear deformation theory with four variables vol.66, pp.3, 2017, https://doi.org/10.12989/sem.2018.66.3.353
  56. Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory vol.15, pp.1, 2017, https://doi.org/10.12989/gae.2018.15.1.711
  57. Vibration and instability of nanocomposite pipes conveying fluid mixed by nanoparticles resting on viscoelastic foundation vol.21, pp.5, 2018, https://doi.org/10.12989/cac.2018.21.5.569
  58. Mathematical modeling of smart nanoparticles-reinforced concrete foundations: Vibration analysis vol.27, pp.4, 2017, https://doi.org/10.12989/scs.2018.27.4.465
  59. Large deflection analysis of a fiber reinforced composite beam vol.27, pp.5, 2017, https://doi.org/10.12989/scs.2018.27.5.567
  60. A novel four-unknown quasi-3D shear deformation theory for functionally graded plates vol.27, pp.5, 2017, https://doi.org/10.12989/scs.2018.27.5.599
  61. Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates vol.7, pp.2, 2017, https://doi.org/10.12989/amr.2018.7.2.119
  62. A new nonlocal HSDT for analysis of stability of single layer graphene sheet vol.6, pp.2, 2017, https://doi.org/10.12989/anr.2018.6.2.147
  63. Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions vol.66, pp.6, 2018, https://doi.org/10.12989/sem.2018.66.6.761
  64. A new quasi-3D higher shear deformation theory for vibration of functionally graded carbon nanotube-reinforced composite beams resting on elastic foundation vol.66, pp.6, 2018, https://doi.org/10.12989/sem.2018.66.6.771
  65. Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter vol.28, pp.1, 2017, https://doi.org/10.12989/scs.2018.28.1.013
  66. Dynamic stability of nanocomposite Mindlin pipes conveying pulsating fluid flow subjected to magnetic field vol.67, pp.1, 2017, https://doi.org/10.12989/sem.2018.67.1.021
  67. Technical and economical assessment of applying silica nanoparticles for construction of concrete structures vol.22, pp.1, 2018, https://doi.org/10.12989/cac.2018.22.1.117
  68. Forced vibration response in nanocomposite cylindrical shells - Based on strain gradient beam theory vol.28, pp.3, 2017, https://doi.org/10.12989/scs.2018.28.3.381
  69. Single variable shear deformation model for bending analysis of thick beams vol.67, pp.3, 2017, https://doi.org/10.12989/sem.2018.67.3.291
  70. Numerical study for vibration response of concrete beams reinforced by nanoparticles vol.67, pp.3, 2018, https://doi.org/10.12989/sem.2018.67.3.311
  71. Nonlinear analysis of damaged RC beams strengthened with glass fiber reinforced polymer plate under symmetric loads vol.15, pp.2, 2017, https://doi.org/10.12989/eas.2018.15.2.113
  72. A new plate model for vibration response of advanced composite plates in thermal environment vol.67, pp.4, 2017, https://doi.org/10.12989/sem.2018.67.4.369
  73. Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix vol.67, pp.5, 2017, https://doi.org/10.12989/sem.2018.67.5.517
  74. Effect of homogenization models on stress analysis of functionally graded plates vol.67, pp.5, 2018, https://doi.org/10.12989/sem.2018.67.5.527
  75. Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory vol.6, pp.3, 2018, https://doi.org/10.12989/anr.2018.6.3.279
  76. Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory vol.15, pp.3, 2017, https://doi.org/10.12989/eas.2018.15.3.285
  77. A novel quasi-3D hyperbolic shear deformation theory for vibration analysis of simply supported functionally graded plates vol.22, pp.3, 2017, https://doi.org/10.12989/sss.2018.22.3.303
  78. Dynamic analysis of immersion concrete pipes in water subjected to earthquake load using mathematical methods vol.15, pp.4, 2017, https://doi.org/10.12989/eas.2018.15.4.361
  79. Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory vol.15, pp.4, 2018, https://doi.org/10.12989/eas.2018.15.4.369
  80. An analytical solution for free vibration of functionally graded beam using a simple first-order shear deformation theory vol.27, pp.4, 2017, https://doi.org/10.12989/was.2018.27.4.247
  81. A refined quasi-3D hybrid-type higher order shear deformation theory for bending and Free vibration analysis of advanced composites beams vol.27, pp.4, 2017, https://doi.org/10.12989/was.2018.27.4.269
  82. Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory vol.22, pp.5, 2017, https://doi.org/10.12989/sss.2018.22.5.527
  83. Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation vol.27, pp.5, 2018, https://doi.org/10.12989/was.2018.27.5.311
  84. Critical buckling loads of carbon nanotube embedded in Kerr's medium vol.6, pp.4, 2017, https://doi.org/10.12989/anr.2018.6.4.339
  85. A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations vol.30, pp.1, 2017, https://doi.org/10.12989/scs.2019.30.1.013
  86. Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory vol.6, pp.1, 2019, https://doi.org/10.12989/aas.2019.6.1.001
  87. Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory vol.28, pp.1, 2017, https://doi.org/10.12989/was.2019.28.1.019
  88. Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory vol.28, pp.1, 2017, https://doi.org/10.12989/was.2019.28.1.049
  89. Hygrothermal effects on the behavior of reinforced-concrete beams strengthened by bonded composite laminate plates vol.69, pp.3, 2017, https://doi.org/10.12989/sem.2019.69.3.327
  90. A novel refined shear deformation theory for the buckling analysis of thick isotropic plates vol.69, pp.3, 2019, https://doi.org/10.12989/sem.2019.69.3.335
  91. Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load vol.7, pp.1, 2017, https://doi.org/10.12989/acc.2019.7.1.051
  92. Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT vol.69, pp.5, 2017, https://doi.org/10.12989/sem.2019.69.5.511
  93. Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT vol.7, pp.2, 2017, https://doi.org/10.12989/anr.2019.7.2.089
  94. Vibration analysis of different material distributions of functionally graded microbeam vol.69, pp.6, 2017, https://doi.org/10.12989/sem.2019.69.6.637
  95. Free Vibration Analysis of Composite Material Plates "Case of a Typical Functionally Graded FG Plates Ceramic/Metal" with Porosities vol.25, pp.None, 2017, https://doi.org/10.4028/www.scientific.net/nhc.25.69
  96. Buckling behavior of rectangular plates under uniaxial and biaxial compression vol.70, pp.1, 2019, https://doi.org/10.12989/sem.2019.70.1.113
  97. Wave dispersion characteristics of agglomerated multi-scale hybrid nanocomposite beams vol.54, pp.4, 2017, https://doi.org/10.1177/0309324719862713
  98. A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates vol.70, pp.3, 2019, https://doi.org/10.12989/sem.2019.70.3.325
  99. Improved analytical method for adhesive stresses in plated beam: Effect of shear deformation vol.7, pp.3, 2017, https://doi.org/10.12989/acc.2019.7.3.151
  100. Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT vol.7, pp.3, 2017, https://doi.org/10.12989/anr.2019.7.3.191
  101. A Novel Refined Plate Theory for Free Vibration Analyses of Single-Layered Graphene Sheets Lying on Winkler-Pasternak Elastic Foundations vol.58, pp.None, 2017, https://doi.org/10.4028/www.scientific.net/jnanor.58.151
  102. The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate vol.18, pp.2, 2017, https://doi.org/10.12989/gae.2019.18.2.161
  103. A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation vol.31, pp.5, 2017, https://doi.org/10.12989/scs.2019.31.5.503
  104. Buckling analysis of arbitrary point-supported plates using new hp-cloud shape functions vol.70, pp.6, 2017, https://doi.org/10.12989/sem.2019.70.6.711
  105. Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities vol.6, pp.2, 2017, https://doi.org/10.12989/smm.2019.6.2.147
  106. Chaotic dynamics of a non-autonomous nonlinear system for a smart composite shell subjected to the hygro-thermal environment vol.25, pp.7, 2019, https://doi.org/10.1007/s00542-018-4206-6
  107. Stability analysis of embedded graphene platelets reinforced composite plates in thermal environment vol.134, pp.7, 2019, https://doi.org/10.1140/epjp/i2019-12581-6
  108. Vibration analysis of nonlocal porous nanobeams made of functionally graded material vol.7, pp.5, 2019, https://doi.org/10.12989/anr.2019.7.5.351
  109. Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates vol.72, pp.1, 2019, https://doi.org/10.12989/sem.2019.72.1.113
  110. Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT vol.24, pp.4, 2017, https://doi.org/10.12989/cac.2019.24.4.347
  111. Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory vol.24, pp.4, 2019, https://doi.org/10.12989/cac.2019.24.4.369
  112. Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory vol.24, pp.4, 2019, https://doi.org/10.12989/cac.2019.24.4.369
  113. The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory vol.7, pp.6, 2017, https://doi.org/10.12989/anr.2019.7.6.443
  114. Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory vol.17, pp.5, 2017, https://doi.org/10.12989/eas.2019.17.5.447
  115. Investigation on thermal buckling of porous FG plate resting on elastic foundation via quasi 3D solution vol.72, pp.4, 2017, https://doi.org/10.12989/sem.2019.72.4.513
  116. Dynamic modeling of a multi-scale sandwich composite panel containing flexible core and MR smart layer vol.134, pp.12, 2017, https://doi.org/10.1140/epjp/i2019-12662-6
  117. Free Vibration Analysis of Simply Supported P-FGM Nanoplate Using a Nonlocal Four Variables Shear Deformation Plate Theory vol.69, pp.4, 2017, https://doi.org/10.2478/scjme-2019-0039
  118. Free vibration analysis of angle-ply laminated composite and soft core sandwich plates vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.663
  119. Wave dispersion properties in imperfect sigmoid plates using various HSDTs vol.33, pp.5, 2017, https://doi.org/10.12989/scs.2019.33.5.699
  120. A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates vol.72, pp.5, 2019, https://doi.org/10.12989/sem.2019.72.5.653
  121. Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model vol.33, pp.6, 2017, https://doi.org/10.12989/scs.2019.33.6.805
  122. On the modeling of dynamic behavior of composite plates using a simple nth-HSDT vol.29, pp.6, 2017, https://doi.org/10.12989/was.2019.29.6.371
  123. Variational approximate for high order bending analysis of laminated composite plates vol.73, pp.1, 2017, https://doi.org/10.12989/sem.2020.73.1.097
  124. Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect vol.34, pp.2, 2017, https://doi.org/10.12989/scs.2020.34.2.279
  125. Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle vol.73, pp.2, 2017, https://doi.org/10.12989/sem.2020.73.2.209
  126. Hygrothermal postbuckling analysis of smart multiscale piezoelectric composite shells vol.135, pp.2, 2017, https://doi.org/10.1140/epjp/s13360-020-00137-w
  127. Application of semi-analytical method to vibration analysis of multi-edge crack laminated composite beams with elastic constraint vol.135, pp.2, 2020, https://doi.org/10.1140/epjp/s13360-020-00140-1
  128. Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle vol.8, pp.2, 2017, https://doi.org/10.12989/anr.2020.8.2.135
  129. A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates vol.25, pp.2, 2020, https://doi.org/10.12989/sss.2020.25.2.197
  130. Parametrically excited nonlinear dynamics and instability of double-walled nanobeams under thermo-magneto-mechanical loads vol.26, pp.4, 2017, https://doi.org/10.1007/s00542-019-04638-2
  131. Buckling response of smart plates reinforced by nanoparticles utilizing analytical method vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.001
  132. Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading vol.8, pp.3, 2017, https://doi.org/10.12989/anr.2020.8.3.203
  133. Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory vol.25, pp.4, 2017, https://doi.org/10.12989/sss.2020.25.4.409
  134. An efficient shear deformation theory with stretching effect for bending stress analysis of laminated composite plates vol.74, pp.3, 2017, https://doi.org/10.12989/sem.2020.74.3.365
  135. A comprehensive review on the modeling of smart piezoelectric nanostructures vol.74, pp.5, 2017, https://doi.org/10.12989/sem.2020.74.5.611
  136. Mixture rule for studding the environmental pollution reduction in concrete structures containing nanoparticles vol.9, pp.3, 2017, https://doi.org/10.12989/csm.2020.9.3.281
  137. Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT vol.36, pp.3, 2017, https://doi.org/10.1007/s00366-019-00732-1
  138. A simple analytical model for free vibration and buckling analysis of orthotropic rectangular plates vol.75, pp.2, 2017, https://doi.org/10.12989/sem.2020.75.2.157
  139. Effect of boundary conditions on thermal buckling of laminated composite shallow shell vol.42, pp.p5, 2021, https://doi.org/10.1016/j.matpr.2020.12.501
  140. Buckling and free vibration characteristics of embedded inhomogeneous functionally graded elliptical plate in hygrothermal environment vol.235, pp.5, 2017, https://doi.org/10.1177/1464420720986899
  141. Thermal buckling strength of smart nanotube-reinforced doubly curved hybrid composite panels vol.90, pp.None, 2017, https://doi.org/10.1016/j.camwa.2021.03.010
  142. Wave dispersion of nanobeams incorporating stretching effect vol.31, pp.4, 2017, https://doi.org/10.1080/17455030.2019.1607623