참고문헌
- Abo-Dadab, S.M., Abd-Alla, S.M. and Khan, A. (2016), "Rotational effects on Rayleigh, Love and Stonely waves in non-homogeneous reinforced anisotropic general viscoelastic media of higher order", Struct. Eng. Mech., 58(1), 181-197. https://doi.org/10.12989/sem.2016.58.1.181
- Achenbach, J.D. and Balogun, O. (2010), "Anti-plane surface waves on a half-space with depth-dependent properties", Wave Motion, 47(1), 59-65. https://doi.org/10.1016/j.wavemoti.2009.08.002
- Chattaraj, R., Samal, S.K. and Mahanti, N.C. (2013), "Dispersion of Love Wave propagating in irregular anisotropic porous stratum under initial stress", Int. J. Geomech., 13(4), 402-408. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000230
- Deresiewicz, H. (1962), "A note on Love waves in a homogeneous crust overlying an inhomogeneous substratum", Bull. Seism. Soc. Am., 52(3), 639-645.
- Du, J.K., Xian, K., Wang, J. and Yong, Y.K. (2008), "Propagation of Love waves in prestressed piezoelectric layered structures loaded with viscous liquid", Acta Mechanica Solida Sinica, 21(6), 542-548. https://doi.org/10.1007/s10338-008-0865-7
- Emery, A.F. and Fadale, T.D. (1997), "Handling temperature dependent properties and boundary conditions in stochastic finite element analysis", Numer. Heat Transfer, Part A, 31(1), 37-51. https://doi.org/10.1080/10407789708914024
- Gubbins, D. (1990), Seismology and Plate Tectonics, Cambridge, Cambridge University Press.
- Gupta, S., Majhi, D.K., Kundu, S. and Vishwakarma, S.K. (2013), "Propagation of Love waves in non-homogeneous substratum over initially stressed heterogeneous half-space", Appl. Math. Mech., 34(2), 249-258. https://doi.org/10.1007/s10483-013-1667-7
- Kadian, P. and Singh, J. (2010), "Effect of size of barrier on reflection of Love Waves", Int. J. Eng. Technol., 2(6), 458-461.
- Kundu, S., Gupta, S. and Majhi, D.K. (2013), "Love wave propagation in porous rigid layer lying over an initially stressed half space", Appl. Phys. Math., 3(2), 140-142.
- Lee, H.J. and. Saravanos, D.A. (1998), "The effect of temperature dependent material properties on the response of piezoelectric composite materials", J. Intel. Mat. Syst. Struct., 9(7), 503-508. https://doi.org/10.1177/1045389X9800900702
- Lokajicek, T., Rudajev, V., Dwivedi, R.D., Goel, R.K. and Swarup, A. (2012), "Influence of thermal heating on elastic wave velocities in granulate", Int. J. Rock Mech. Min. Sci., 54, 1-8. https://doi.org/10.1016/j.ijmecsci.2011.04.004
- Love, A.E.H. (1927), The mathematical theory of Elasticity, Cambridge, Cambridge University press.
- Madan, D.K., Kumar R. and Sikka, J.S. (2014), "Love wave propagation in an irregular fluid saturated porous anisotropic layer with rigid boundary", J. Appl. Sci. Res., 10(4), 281-287.
- Manna, S., Kundu, S. and Gupta, S. (2013), "Love wave propagation in a piezoelectric layer overlying in an inhomogeneous elastic half-space", J. Vib. Control., doi: 1077546313513626.
- Schreiber, E., Anderson, O.L. and Soga, N. (1973), Elastic Constants and Their Measurement, Mc Graw-Hill, New York, pp.196.
- Sun, D. and Luo, S.N. (2011), "Wave propagation of functionally graded material plates in thermal environments", Ultrasonics, 51(8), 940-952. https://doi.org/10.1016/j.ultras.2011.05.009
- Tillmann, A.R., Borges, V.L., Guimarães, G., Silva, A.L.F.L. and Silva, S.M.M.L. (2008), "Identification of temperaturedependent thermal properties of solid materials", J. Braz. Soc. Mech. Sci. Eng., 30(4), 269-278.