DOI QR코드

DOI QR Code

Optimal vibration energy harvesting from nonprismatic piezolaminated beam

  • Biswal, Alok R (Department of Mechanical Engineering, National Institute of Technology Rourkela) ;
  • Roy, Tarapada (Department of Mechanical Engineering, National Institute of Technology Rourkela) ;
  • Behera, Rabindra K (Department of Mechanical Engineering, National Institute of Technology Rourkela)
  • Received : 2016.06.19
  • Accepted : 2016.12.11
  • Published : 2017.04.25

Abstract

The present article encompasses a nonlinear finite element (FE) and genetic algorithm (GA) based optimal vibration energy harvesting from nonprismatic piezo-laminated cantilever beams. Three cases of cross section profiles (such as linear, parabolic and cubic) are modelled to analyse the geometric nonlinear effects on the output responses such as displacement, voltage, and power. The simultaneous effects of taper ratios (such as breadth and height taper) on the output power are also studied. The FE based nonlinear dynamic equation of motion has been solved by an implicit integration method (i.e., Newmark method in conjunction with the Newton-Raphson method). Besides this, a real coded GA based constrained optimization scheme has also been proposed to determine the best set of design variables for optimal harvesting of power within the safe limits of beam stress and PZT breakdown voltage.

Keywords

References

  1. Abdelkefi, A. (2016), "Aeroelastic energy harvesting: A review", Int. J. Eng. Sci., 100, 112-135. https://doi.org/10.1016/j.ijengsci.2015.10.006
  2. Abdelkefi, A. and Barsallo, N. (2016), "Nonlinear analysis and power improvement of broadband low-frequency piezomagnetoelastic energy harvesters", Nonlin. Dyn., 83(1-2), 41-56. https://doi.org/10.1007/s11071-015-2306-8
  3. Abdelkefi, A., Hajj, M. and Nayfeh, A. (2013), "Piezoelectric energy harvesting from transverse galloping of bluff bodies", Smart Mater. Struct., 22(1), 015014. https://doi.org/10.1088/0964-1726/22/1/015014
  4. Abdelkefi, A., Nayfeh, A. and Hajj, M. (2012), "Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation", Nonliear Dynam., 67(2), 1221-1232. https://doi.org/10.1007/s11071-011-0064-9
  5. Arora, R., Tulshyan, R. and Deb, K. (2010), "Parallelization of binary and real-coded genetic algorithms on GPU using CUDA", Evolutionary Computation (CEC), 2010 IEEE Congress, 1-8.
  6. Ayed, S.B., Abdelkefi, A., Najar, F. and Hajj, M.R. (2013), "Design and performance of variable-shaped piezoelectric energy harvesters", J. Intel. Mater. Syst. Struct., 25(2), 174-186. https://doi.org/10.1177/1045389X13489365
  7. Bathe, K.-J. (2006), Finite Element Procedures, Klaus-Jurgen Bathe.
  8. Benasciutti, D., Moro, L., Zelenika, S. and Brusa, E. (2010), "Vibration energy scavenging via piezoelectric bimorphs of optimized shapes", Microsyst. Technol., 16(5), 657-668. https://doi.org/10.1007/s00542-009-1000-5
  9. Bibo, A., Abdelkefi, A. and Daqaq, M.F. (2015), "Modeling and characterization of a piezoelectric energy harvester under Combined Aerodynamic and Base Excitations", J. Vib. Acoust., 137(3), 031017. https://doi.org/10.1115/1.4029611
  10. Bichiou, Y., Abdelkefi, A. and Hajj, M.R. (2016), "Nonlinear aeroelastic characterization of wind turbine blades", J. Vib. Control, 22(3), 621-631. https://doi.org/10.1177/1077546314529986
  11. Biswal, A.R., Roy, T. and Behera, R.K. (2015), "Genetic algorithm-and finite element-based design and analysis of nonprismatic piezolaminated beam for optimal vibration energy harvesting", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406215595253. https://doi.org/10.1177/0954406215595253
  12. Bruch Jr, J., Sloss, J., Adali, S. and Sadek, I. (2000), "Optimal piezo-actuator locations/lengths and applied voltage for shape control of beams", Smart Mater. Struct., 9(2), 205. https://doi.org/10.1088/0964-1726/9/2/311
  13. Chuang, Y.C., Chen, C.T. and Hwang, C. (2016), "A simple and efficient real-coded genetic algorithm for constrained optimization", Appl. Soft Comput., 38, 87-105. https://doi.org/10.1016/j.asoc.2015.09.036
  14. Dai, H., Abdelkefi, A. and Wang, L. (2014), "Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations", Nonlinear Dynam., 77(3), 967-981. https://doi.org/10.1007/s11071-014-1355-8
  15. Dietl, J.M. and Garcia, E. (2010), "Beam shape optimization for power harvesting", J. Intel. Mater. Syst. Struct., 21(6), 633-646. https://doi.org/10.1177/1045389X10365094
  16. Erturk, A. and Inman, D.J. (2009), "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations", Smart Mater. Struct., 18(2), 025009. https://doi.org/10.1088/0964-1726/18/2/025009
  17. Flynn, A.M. and Sanders, S.R. (2002), "Fundamental limits on energy transfer and circuit considerations for piezoelectric transformers", Pow. Electron., IEEE Trans., 17(1), 8-14. https://doi.org/10.1109/63.988662
  18. Hong, E., Trolier-McKinstry, S., Smith, R., Krishnaswamy, S.V. and Freidhoff, C.B. (2006), "Vibration of micromachined circular piezoelectric diaphragms", Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Trans., 53(4), 697-706. https://doi.org/10.1109/TUFFC.2006.1621496
  19. Hwang, W. S. and Park, H.C. (1993), "Finite element modeling of piezoelectric sensors and actuators", AIAA J., 31(5), 930-937. https://doi.org/10.2514/3.11707
  20. Javed, U., Abdelkefi, A. and Akhtar, I. (2016), "An improved stability characterization for aeroelastic energy harvesting applications", Commun. Nonlin. Sci. Numer. Simulat., 36, 252-265. https://doi.org/10.1016/j.cnsns.2015.12.001
  21. Mehraeen, S., Jagannathan, S. and Corzine, K. (2010), "Energy harvesting from vibration with alternate scavenging circuitry and tapered cantilever beam", Indust. Electron., IEEE Trans., 57(3), 820-830.
  22. Moheimani, S.R. and Fleming, A.J. (2006), "Fundamentals of Piezoelectricity", Piezoelectric Transducers for Vibration Control and Damping, 9-35.
  23. Mukherjee, A. and Chaudhuri, A.S. (2005), "Nonlinear dynamic response of piezolaminated smart beams", Comput. Struct., 83(15), 1298-1304. https://doi.org/10.1016/j.compstruc.2004.06.008
  24. Mukherjee, A. and Chaudhuri, A.S. (2002), "Piezolaminated beams with large deformations", Int. J. Solid. Struct., 39(17), 4567-4582. https://doi.org/10.1016/S0020-7683(02)00341-4
  25. Reddy, J.N. (2014), An Introduction to Nonlinear Finite Element Analysis: with applications to heat transfer, fluid mechanics, and solid mechanics, OUP Oxford.
  26. Rosa, M. and De Marqui Junior, C. (2014), "Modeling and analysis of a piezoelectric energy harvester with varying crosssectional area", Shock Vib., 2014, 1-9.
  27. Roundy, S., Leland, E.S., Baker, J., Carleton, E., Reilly, E., Lai, E., Otis, B., Rabaey, J.M., Wright, P.K. and Sundararajan, V. (2005), "Improving power output for vibration-based energy scavengers", Pervasive Comput., IEEE, 4(1), 28-36. https://doi.org/10.1109/MPRV.2005.14
  28. Roy, T. and Chakraborty, D. (2008), "GA-LQR based optimal vibration control of smart FRP composite structures with bonded PZT patches", J. Reinforced Plast. Compos., 28(11), 1383-1404. https://doi.org/10.1177/0731684408089506
  29. Roy, T. and Chakraborty, D. (2009a), "Genetic algorithm based optimal control of smart composite shell structures under mechanical loading and thermal gradient", Smart Mater. Struct., 18(11), 115006. https://doi.org/10.1088/0964-1726/18/11/115006
  30. Roy, T. and Chakraborty, D. (2009b), "Optimal vibration control of smart fiber reinforced composite shell structures using improved genetic algorithm", J. Sound Vib., 319(1), 15-40. https://doi.org/10.1016/j.jsv.2008.05.037
  31. Xue, H., Hu, Y. and Wang, Q.-M. (2008), "Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies", Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Trans., 55(9), 2104-2108. https://doi.org/10.1109/TUFFC.903

Cited by

  1. Linear shell elements for active piezoelectric laminates vol.20, pp.6, 2017, https://doi.org/10.12989/sss.2017.20.6.729