DOI QR코드

DOI QR Code

Distributed estimation over complex adaptive networks with noisy links

  • Farhid, Morteza (Department of Electrical Engineering, Sahand university of technology) ;
  • Sedaaghi, Mohammad H. (Department of Electrical Engineering, Sahand university of technology) ;
  • Shamsi, Mousa (Department of Electrical Engineering, Sahand university of technology)
  • 투고 : 2016.01.06
  • 심사 : 2017.01.12
  • 발행 : 2017.04.25

초록

In this paper, we investigate the impacts of network topology on the performance of a distributed estimation algorithm, namely combine-then-adaptive (CTA) diffusion LMS, based on the data with or without the assumptions of temporal and spatial independence with noisy links. The study covers different network models, including the regular, small-world, random and scale-free whose the performance is analyzed according to the mean stability, mean-square errors, communication cost (link density) and robustness. Simulation results show that the noisy links do not cause divergence in the networks. Also, among the networks, the scale free network (heterogeneous) has the best performance in the steady state of the mean square deviation (MSD) while the regular is the worst case. The robustness of the networks against the issues like node failure and noisier node conditions is discussed as well as providing some guidelines on the design of a network in real condition such that the qualities of estimations are optimized.

키워드

참고문헌

  1. Barabasi, A.L. and Albert, R. (1999), "Emergence of scaling in random networks", Science, 286(15), 509-512. https://doi.org/10.1126/science.286.5439.509
  2. Cattivelli, F.S. and Sayed, A.H. (2010), "Diffusion LMS strategies for distributed estimation", IEEE Trans. Sign. Proc., 58(3), 1035-1048. https://doi.org/10.1109/TSP.2009.2033729
  3. Cattivelli, F.S., Lopes, C.G. and Sayed, A.H. (2008), "Diffusion recursive least-squares for distributed estimation over adaptive networks", IEEE Trans. Sign. Proc., 56(5), 1865-1877. https://doi.org/10.1109/TSP.2007.913164
  4. Cattivelli, F.S., Lopes, C.G. and Sayed, A.H. (2008), "Diffusion strategies for distributed Kalman filtering: formulation and performance analysis", Proceeding of the Workshop on Cognitive Infrastructure Process, Santorini, Greece.
  5. Erdos, P. and Renyi, A. (1959), "On the evolution of random graphs", Pub. Math. Inst. Hung. Acad. Sci., 5(1), 17-60.
  6. Goldingay, H. and Mourika, J. (2011), "The effect of load on agent-based algorithms for distributed task allocation", Inform. Sci., 222, 66-80.
  7. Horn, R.A. and Johnson, C.R. (1990), "Matrix analysis", Cambridge, England.
  8. Ilarri, S., Mena, E. and Illarramendi, A. (2008), "Using cooperative mobile agents to monitor distributed and dynamic environments", Inform. Sci., 178(9), 2105-2127. https://doi.org/10.1016/j.ins.2007.12.015
  9. Kar, S. and Moura, J.M.F. (2009), "Distributed consensus algorithms in sensor networks with imperfect communication: Link failures and channel noise", IEEE Trans. Sign. Proc., 57(1), 355-369. https://doi.org/10.1109/TSP.2008.2007111
  10. Khalili, A., Tinati, M.A., Rastegarnia, A. and Chambers, J.A. (2012), "Steady-state analysis of diffusion LMS adaptive networks with noisy links", IEEE Trans. Sign. Proc., 60(2), 974-979. https://doi.org/10.1109/TSP.2011.2173338
  11. Khalili, A., Tinati, M.A., Rastegarnia, A. and Chambers, J.A. (2012), "Steady-state analysis of diffusion LMS adaptive networks with noisy links", IEEE Trans. Sign. Proc., 60(2), 974-979. https://doi.org/10.1109/TSP.2011.2173338
  12. Khalili, A., Tinati, M.A., Rastegarnia, A. and Chambers, J.A. (2012), "Transient analysis of diffusion least-mean squares adaptive networks with noisy channels", Wiley Int. J. Adapt. Control Sign. Proc., 26(2), 171-180. https://doi.org/10.1002/acs.1279
  13. Li, L and Chambers, J.A. (2008), "A new incremental affine projection based adaptive learning scheme for distributed networks", Sign. Proc., 88(10), 2599-2603. https://doi.org/10.1016/j.sigpro.2008.04.020
  14. Liu, J., Chu, M. and Reich, J.E. (2007), "Multitarget tracking in distributed sensor networks", IEEE Sign. Proc. Mag., 24(3), 36-46. https://doi.org/10.1109/MSP.2007.361600
  15. Lopes, C.G. and Sayed, A.H. (2006), "Distributed processing over adaptive networks", Proceeding of Adaptive Sensor Array Processing Workshop, MIT Lincoln Lab., Lexington, MA.
  16. Lopes, C.G. and Sayed, A.H. (2007), "Incremental adaptive strategies over distributed networks", IEEE Trans. Sign. Proc., 55(8), 4064-4077. https://doi.org/10.1109/TSP.2007.896034
  17. Mergen, G. and Tong, L. (2006), "Type based estimation over multi access channels", IEEE Trans. Sign. Proc., 54(2), 613-626. https://doi.org/10.1109/TSP.2005.861896
  18. Moghim, N., Safavi, S.M. and Hashemi, M.R. (2010), "Performance evaluation of a new end-point admission control algorithm in NGN with improved network utilization", Int. J. Innov. Comput. Inf. Control, 6(7), 3067-3080.
  19. Newman, M.E.J. and Watts D.J. (1999), "Renormalization group analysis of the small-world network model", Phys. Lett. A, 263(4), 341-346. https://doi.org/10.1016/S0375-9601(99)00757-4
  20. Ribeiro, A. and Giannakis, G.B. (2006), "Bandwidth-constrained distributed estimation for wireless sensor networks, Part I: Gaussian case", IEEE Trans. Sign. Proc., 54(3), 1131-1143. https://doi.org/10.1109/TSP.2005.863009
  21. Sayed, A.H. and Lopes, C.G. (2006), "Distributed recursive leastsquares strategies over adaptive networks", Proceeding of Asilomar Conference Signals, Systems, Computers, 233-237.
  22. Strogatz S.H. (2001), "Exploring complex networks", Nature, 410(6825), 268-276. https://doi.org/10.1038/35065725
  23. Sung, W. and Chen, C. (2010), "Parallel data fusion for an industrial automatic monitoring system using radial basis function networks", Int. J. Innov. Comput. Inf. Control, 1(6), 2523-2536.
  24. Touri, B. and Nedic, A. (2009), "Distributed consensus over network with noisy links", Proceeding of the 12th International Conference Information Fusion, Seattle, WA, 146-154.
  25. Tu, S.Y. and Sayed, A.H. (2011), "Mobile adaptive networks", IEEE J. Sel. Topics. Sign. Proc., 5(4), 649-664. https://doi.org/10.1109/JSTSP.2011.2125943
  26. Wang, X.F. (2002), "Complex networks: topology, dynamics and synchronization", Int. J. Bifurcation Chaos, 12(5), 885-916. https://doi.org/10.1142/S0218127402004802
  27. Willsky, A.S., Bello, M., Castanon, D.A., Levy, B.C. and Verghese, G. (1982), "Combining and updating of local estimates and regional maps along sets of one-dimensional tracks", IEEE Trans. Automa. Control, 27(4), 799-813. https://doi.org/10.1109/TAC.1982.1103019
  28. Ying Liu, Chunguang Li, Wallace K.S. Tang and Zhaoyang Z. (2012), "Distributed estimation over complex networks", Inform. Sci., 197, 91-104. https://doi.org/10.1016/j.ins.2012.02.008