DOI QR코드

DOI QR Code

Parameter estimations to improve urban planning area runoff prediction accuracy using Stormwater Management Model (SWMM)

SWMM을 이용한 도시계획지역 유출량 예측 정확도 향상을 위한 매개변수 산정

  • Koo, Young Min (Department of Environmental Engineering, Chungnam National University) ;
  • Seo, Dongil (Department of Environmental Engineering, Chungnam National University)
  • Received : 2017.02.27
  • Accepted : 2017.04.10
  • Published : 2017.05.31

Abstract

In environmental impact assessments for large urban development projects, the Korean government requires analysis of stormwater runoff before, during and after the projects. Though hydrological models are widely used to analyze and prepare for surface runoff during storm events, accuracy of the predicted results have been in question due to limited amount of field data for model calibrations. Intensive field measurements have been made for storm events between July 2015 and July 2016 at a sub-basin of the Gwanpyung-cheon, Daejeon, Republic of Korea using an automatic monitoring system and also additional manual measurements. Continuous precipitation and surface runoff data used for utilization of SWMM model to predict surface runoff during storm events with improved accuracy. The optimal values for Manning's roughness coefficient and values for depression storage were estimated for pervious and impervious surfaces using three representative infiltration methods; the Curve Number Methods, the Horton's Method and the Green-Ampt Methods. The results of the research is expected to be used more efficiently for urban development projects in Korea.

우리나라에서는 도시 개발사업을 위한 환경영향평가를 실시하는데 있어 개발 전 중 후의 강우유출량을 분석하도록 규정하고 있다. 도시개발에 따른 수문학적 변화를 분석하고 대책을 수립하기 위해 수문모델이 사용되고 있으나 대부분의 경우 현장의 자료가 충분하지 않은 관계로 그 산정결과의 신뢰도가 문제될 수 있다. 본 연구에서는 대전의 관평천 일부유역에서 2015년 7월 부터 2016년 7월 까지 자동 모니터링 장치을 이용하고 또한 및 현장 측정을 통해 확보된 강우량 및 유출유량의 연속자료를 활용하여 SWMM을 이용하는 경우 강우 유출량 예측의 정확도를 제고하고자 하였다. 토양침투량 산정을 위해 대표적으로 사용되는 Curve Number 방법, Horton 방법 및 Green-Ampt 방법들을 사용한 경우에 대해서 투수지역과 불투수 지역에 대해 각각 최적의 Manning 조도계수와 지표면 저류깊이를 산정하여 제시하였다. 본 연구의 결과는 우리나라의 도시 유역에서 실측자료를 이용하여 강우 유출 모델을 보정하였다는 면에서 의미가 있다고 판단되며 추후 유역의 개발등의 상황에 대해는 강우 시 유출량 및 수질현상을 더욱 정확하게 예측하고 나아가서 향후의 유역 내 수문조건 변화 요인에 대한 영향을 분석하는 데 정확도를 향상시킬 수 있을 것으로 기대된다.

Keywords

References

  1. Barco, J., Wong, K. M., and Stenstrom, M. K. (2008). "Automatic calibration of the U.S. EPA SWMM model for a large urban catchment." Journal of Hydraulic Engineering, Vol. 134, No. 4, pp. 466-474. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:4(466)
  2. Borris, M., Viklander, M., Gustafsson, A. M., and Marsalek, J. (2014). "Modelling the effects of changes in rainfall event characteristics on TSS loads in urban runoff." Hydrological Processes, Vol. 28, pp. 1787-1796. https://doi.org/10.1002/hyp.9729
  3. Choi, K. S., and Ball, J. E. (2002). "Parameter estimation for urban runoff modelling." Urban Water, Vol. 4, pp. 31-41. https://doi.org/10.1016/S1462-0758(01)00072-3
  4. Chow, M. F., Yusop, Z., and Toriman, M. E. (2012). "Modelling runoff quantity and quality in tropical urban catchments using storm water management model." J. Environ. Sci. Technol., Vol. 9, pp. 737-748. https://doi.org/10.1007/s13762-012-0092-0
  5. Chu, S. T. (1978). "Infiltration during an unsteady rain, water resources research." Water Resources Research, Vol. 14, No. 3, pp. 461-466. https://doi.org/10.1029/WR014i003p00461
  6. Green, W. H., and Ampt, G. A. (1911). "Studies on soil physics, 1. the flow of air and water through soil." Journal of Agricultural Sciences, Vol. 4, pp. 11-24.
  7. Gregory, J. H., Dukes, M. D., Jones, P. H., and Miller, G. L. (2006). "Effect of urban soil compaction on infiltration rate." Journal of Soil and Water Conservation, Vol. 61, No. 3, pp. 117-124.
  8. Gremmer & Associates, INC. (2003). Manitowoc road stormwater management. Technical Report, Journal of Soil and Water Conservation, Vol. 61, No. 3, pp. 117-123.
  9. Han, Y. H., and Seo, D. (2014). "Application of LID methods for sustainable management of small urban stream using SWMM." J. Korean Soc. Environ. Eng., Vol. 36, No. 10, pp. 691-697. https://doi.org/10.4491/KSEE.2014.36.10.691
  10. HDR Engineering (2007). City of boulder stormwater master plan. Technical Report.
  11. Horton, R. E. (1940). "An approach toward a physical interpretation of infiltration capacity." Proceeding Soil Science of America, Vol. 5, pp. 399-417.
  12. Huber, W. C., and Dickinson, R. E. (1988). Storm water managemnet model, version 4, user's manual. United States Environmental Protection Agency Technical Report.
  13. Jacob, C. T. (2007) A storm water management model to predict runoff and streamflow in the pennichuck brook watershed. Master Thesis, Cornell University.
  14. Jang, S. J. (2009). "A study on the proper size of rainwater stored tank in submerged districts using SWMM program." J. Korean Housing Association, Vol. 20, No. 3, pp. 69-76.
  15. Jang, Y. S., Mun, S. H., and Yang, S. L. (2013). "An analysis of flood mitigation effect applying to LID in Mokgamcheon watershed using SWMM model." Int. J. Highw. Eng., Vol. 15, No. 3, pp. 75-83 (in Korea). https://doi.org/10.7855/IJHE.2013.15.3.075
  16. Javier, T., Oscar, A., Juan, C., Joaquin, S., and Inaki, T. (2006). "Stormwater quality calibration by SWMM, A case study in northern Spain." Water SA, Vol. 32, No. 1, pp. 55-63.
  17. Kang, T. U., and Lee, S. H. (2012). "A study for a reasonable application of the SWMM to watershed runoff event simulation." J. Korean Soc. Hazard Mitig., Vol. 12, No. 6, pp. 247-258 (in Korean). https://doi.org/10.9798/KOSHAM.2012.12.6.247
  18. Kang, T. U., and Lee, S. H. (2014). "Development on an automatic calibration module of the SWMM for watershed runoff simulation and water quality simulation." J. Korea Water Resources Association, Vol. 47, No. 4, pp. 343-356 (in Korean). https://doi.org/10.3741/JKWRA.2014.47.4.343
  19. Kang, T. U., Koo, Y. M., and Lee, S. J. (2015). "Design of stormwater pipe considering vegetative swale with water conveyance." J. Korean Soc. Hazard Mitig., Vol. 15, No. 1, pp. 335-343 (in Korean). https://doi.org/10.9798/KOSHAM.2015.15.1.335
  20. Kang, T. U., Lee, S. H., Kang, S. U., and Park, J. P. (2012). "A study for an automatic calibration of urban runoff model by the SCE-UA." Korea Water Resources Association, Vol. 45, No. 1, pp. 15-27 (in Korea). https://doi.org/10.3741/JKWRA.2012.45.1.15
  21. Kim, K. U., Kim, S. D., and Kim, C. S. (2012). "A analysis model for urban flooding hazard zone based on the SWMM simulation historical CB." J. Korean Soc. Hazard Mitig., Vol. 12, No. 1, pp. 217-222 (in Korean). https://doi.org/10.9798/KOSHAM.2012.12.1.217
  22. Koo, Y. M., Kim, Y. D., and Park, J. H. (2014). "Analysis of nonpoint pollution source reduction by permeable pavement." J. Korea Water Resources Association, Vol. 47, No. 1, pp. 49-62 (in Korean). https://doi.org/10.3741/JKWRA.2014.47.1.49
  23. Lee, H. W., and Choi, J. H. (2015). "Analysis of rainfall-runoff characteristics in Shiwha industrial watershed using SWMM." J. Korean Soc. Environ. Eng., Vol. 37, No. 1, pp. 14-22 (in Korea). https://doi.org/10.4491/KSEE.2015.37.1.14
  24. Lee, J. H., Song, Y. H., and Jo, D. J. (2013). "Determination of optimal locations of urban subsurface storage considering SWMM parameter sensitivity." J. Korean Soc. Hazard Mitig., Vol. 13, No. 4, pp. 295-301 (in Korea). https://doi.org/10.9798/KOSHAM.2013.13.4.295
  25. Lee, J. H., and Yeon, K. S. (2008). "Flood inundation analysis using XP-SWMM model in urban area." J. Korean Soc. Hazard Mitig., Vol. 8, No. 5, pp. 155-161 (in Korea).
  26. Lee, J. T. (1998). "Urban runoff and water quality models." J. Korea Water Resources Association, Vol. 31, No.61, pp. 709-725 (in Korea).
  27. Lee, J. Y., Jang, S. H., and Park, J. S. (2008). Application of SWMM for management of the non-point source in urban area, case study on the pohang city." J. Env. Hlth. Sci., Vol. 34, No. 3, pp. 247-254 (in Korea).
  28. Li, C., Wang, W., Xiong, J., and Chen, P. (2014). "Sensitivity analysis for urban drainage modeling using mutual information." Entropy, Vol. 16, pp. 5738-5752. https://doi.org/10.3390/e16115738
  29. Maria, D. M., Andrea, G., Angela, G., Viro, I., Giovanni, I. F., Alberto, F. P., and Ezio, R. (2015). "Build-up/wash-off monitoring and assessment for sustainable management of first flush in an urban area." Sustainability, Vol. 7, pp. 5050-5070. https://doi.org/10.3390/su7055050
  30. Maryland Department of the Environment (2010). Patapsco/back river watershed SWMM model report. Technical Report.
  31. Mein, R. G., and Larson, C. L., (1973). "Modeling infiltration during a steady rain." Water Resources Research, Vol. 9, No. 2, pp. 384-394. https://doi.org/10.1029/WR009i002p00384
  32. Misgana, K. M., and John, W. N. (2005). "Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model." Journal of Hydrology, Vol. 306, pp. 127-145. https://doi.org/10.1016/j.jhydrol.2004.09.005
  33. MOE (Ministry of Environment) (2016). Regulations on the preparation of environment impact assessment. Vol. 22.
  34. MPSS (Ministry of Public Safety and Security) (2016). Practical guidelines of pre-disaster impact assessment consultation. Technical Report, Vol. 79.
  35. NRCS (Natural Resource Conservation Service) (2004). Estimation of direct runoff from storm rainfall. National Engineering Handbook.
  36. Ouyang, W., Guo, B., Hao, F., Huang, H., Li, J., and Gong, Y. (2012). "Modeling urban storm rainfall runoff from diverse underlying surfaces and application for control design in Beijing." Journal of Environmental Management, Vol. 113, pp. 467-473. https://doi.org/10.1016/j.jenvman.2012.10.017
  37. Park, J. Y., Lim, H. M., Lee, H. I., Yoon, Y. H., Oh, H. J., and Kim, W. J. (2013). "Water balance and pollutant load analyses according to LID techniques for a town development." J. Korean Soc. Environ. Eng., Vol. 35, No. 11, pp. 795-802 (in Korea). https://doi.org/10.4491/KSEE.2013.35.11.795
  38. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in C. The art of Scientific Computing, Cambridge University Press, New York, Second Edition.
  39. Rossman, L. A., and Huber, W. C. (2016). Storm water management model reference manual. Volume 1, Hydrology (Revised), United States Enviromental Protection Agency Technical Report.
  40. Seo, D., and Fang, T. H. (2012). "Application of automatic stormwater monitoring system and SWMM model for estimation of urban pollutant loading during storm event." J. Korean Soc. Environ. Eng., Vol. 34, No. 6, pp. 373-381 (in Korea). https://doi.org/10.4491/KSEE.2012.34.6.373
  41. Sezar, G., and Cevza, M. K. A. (2013). "Calibrated hydrodynamic model for sazlidere watershed in istanbul and investigation of urbanization effects." Journal of Hydrologic Engineering, Vol. 18, pp. 75-84. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000600
  42. Terstriep, M. L., and Stall, J. B. (1969). "Urban runoff by road-research labotory method." ASCE, Journal of the Hydraulics Division, Vol. 95, No. HY6, PROC PAPER 6878, pp. 1809-1834.
  43. Terstriep, M. L., and Stall, J. B. (1974), "Illinois urban drainage area simulator, The ILLUSDAS." State of Illinois, Department of Registration and Education, ISWS-74-BUL58.
  44. UDFCD (Urban Drainage and Flood Control District) (2008). Runoff, Chapter 5 in Volume of Urban Storm Drainage Criteria Manual.
  45. USEPA (United States Enviromental Protection Agency) (2014). Greening CSO plans: Planning and modeling green infrastructure for Combined Sewer Overflow(CSO) control. United States Enviromental Protection Agency Technical Report.
  46. Versar, Inc. (2007). Modeling report, cameron run watershed plan. Technical Report.
  47. Yao, L., Wei, W., and Chen L. (2016). "How does imperviousness impact the urban rainfall-runoff process under various storm case?" Ecological Indicators, Vol. 60, pp. 893-905. https://doi.org/10.1016/j.ecolind.2015.08.041
  48. Yin, Z. H., Koo, Y. M., Lee, E. Y., and Seo, D. I. (2015). "Development of integrated management system of stormwater retention and treatment in waterside land for urban stream environment. J. Korean Soc. Environ. Eng., Vol. 37, No. 2, pp. 126-135 (in Korea). https://doi.org/10.4491/KSEE.2015.37.2.126
  49. Zare, S. O., Saghafian, B., and Shamsai, A. (2012). "Multi-objective optimization for combined quality-quantity urban runoff control." Hydrol. Earth Syst. Sci., Vol. 16, pp. 4531-4542. https://doi.org/10.5194/hess-16-4531-2012