Acknowledgement
Supported by : National Natural Science Foundation of China
References
-
Balogh M. and Parente A. (2015), "Realistic boundary conditions for the simulation of atmospheric boundary layer flows using an improved k-
${\varepsilon}$ model", J. Wind Eng. Ind. Aerod., 144, 183-190. https://doi.org/10.1016/j.jweia.2015.01.010 - Baric, E., Dzijan, I. and Kozmar, H. (2010), "Numerical simulation of wind characteristics in the wake of a rectangular building submitted to realistic boundary layer conditions", Transactions of Famena, 34(3), 1-10.
- Blocken, B., Stathopoulos, T. and Carmeliet, J. (2007), "CFD simulation of the atmospheric boundary layer: wall function problems", Atmosph. Environ., 41(2), 238-252. https://doi.org/10.1016/j.atmosenv.2006.08.019
- Blocken, B. (2014), "50 years of Computational Wind Engineering: Past, present and future", J. Wind Eng. Ind. Aerod., 129, 69-102. https://doi.org/10.1016/j.jweia.2014.03.008
- Davenport, A.G. (1967), "The dependence of wind loads on meteorological parameters", Proceedings of the International Seminar on Wind Effects on Buildings and Structures, Ottawa, Canada.
- Eurocode 1: Actions on structures-Part 1-4: General actions-Wind actions. http://eurocodes.jrc.ec.europa.eu/.
- Franke, J., Hellsten, A., Schlunzen, H. and Carissimo, B. (2007), "Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment", COST Office, Brussels, ISBN 3-00-018312-4. http://www.mi.uni-hamburg.de/Official-Documents.5849.0.html
-
Hargreaves, D.M. and Wright. N.G. (2007), "On the use of the k-
${\varepsilon}$ model in commercial CFD software to model the neutral atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 95(5), 355-369. https://doi.org/10.1016/j.jweia.2006.08.002 - Gorle, C., van Beeck, J. and Rambaud, P. (2010), "Dispersion in the wake of a rectangular building: validation of two reynolds-averaged navier-Stokes modelling approaches", Bound. -Lay. Meteorol., 137(1), 115-133. https://doi.org/10.1007/s10546-010-9521-0
- Gorle, C., van Beeck, J., Rambaud, P. and Van Tendeloo, G. (2009), "CFD modelling of small particle dispersion: The influence of the turbulence kinetic energy in the atmospheric boundary layer", Atmosph. Environ., 43, 673-681. https://doi.org/10.1016/j.atmosenv.2008.09.060
- Kozmar, H. (2011), "Wind-tunnel simulations of the suburban ABL and comparison with international standards", Wind Struct., 14(1), 15-34. https://doi.org/10.12989/was.2011.14.1.015
- Labovsky, J. and Jelemensky, L. (2011), "Verification of CFD pollution dispersion modelling based on experimental data", J. Loss Prevent. Proc., 24(2), 166-177. https://doi.org/10.1016/j.jlp.2010.12.005
- Load Code for the Design of Building Structures, GB 5009-2012, Ministry of Construction, China.
- Menter, F.R. (1994), "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA J., 32(8), 1598-1605. https://doi.org/10.2514/3.12149
- O'Sullivan, J.P., Archer, R.A. and Flay, R.G.J. (2011), "Consistent boundary conditions for flows within the atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 99, 65-77. https://doi.org/10.1016/j.jweia.2010.10.009
-
Parente A., Gorle C., van Beeck J. and Benocci C. (2011a), "Improved k-
${\varepsilon}$ model and wall function formulation for the RANS simulation of ABL flows", J. Wind Eng. Ind. Aerod., 99, 267-278. https://doi.org/10.1016/j.jweia.2010.12.017 - Parente A., Gorle C., van Beeck J. and Benocci C. (2011b), "A comprehensive modelling approach for the neutral atmospheric boundary layer: Consistent inflow conditions, wall function and turbulence model", Bound. - Lay.Meteorol., 140, 411-428. https://doi.org/10.1007/s10546-011-9621-5
-
Richards P.J. and Hoxey R.P. (1993), "Appropriate boundary conditions for computational wind engineering models using the k-
${\varepsilon}$ model", J. Wind Eng. Ind. Aerod., 46-47, 145-153. https://doi.org/10.1016/0167-6105(93)90124-7 - Richards, P.J., Quinn, A.D. and Parker, S. (2002), "A 6 m cube in an atmosphere boundary layer flow, Part 2. Computational solutions", Wind Struct., 5(2-4), 177-192. https://doi.org/10.12989/was.2002.5.2_3_4.177
- Richards, P.J. and Norris, S.E. (2011), "Appropriate boundary conditions for computational wind engineering models revisited", J. Wind Eng. Ind. Aerod., 99(4), 257-266. https://doi.org/10.1016/j.jweia.2010.12.008
- Richards, P.J. and Norris, S.E. (2015), "Appropriate boundary conditions for a pressure driven boundary layer", J. Wind Eng. Ind. Aerod., 142, 43-52. https://doi.org/10.1016/j.jweia.2015.03.003
- Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M. and Shirawasa, T. (2008), "AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings", J. Wind Eng. Ind. Aerod., 96 (10-11), 1749-1761. https://doi.org/10.1016/j.jweia.2008.02.058
- Yang, W. (2004), "Numerical simulation research on the wind loads of building structures and their dynamic responses based on RANS", Ph.D. Dissertation, Tongji University, Shanghai.
- Yang, W., Quan, Y., Jin, X.Y., Tamura, Y. and Gu, M. (2008), "Influences of equilibrium atmosphere boundary layer and turbulence parameter on wind loads of low-rise building". J. Wind Eng. Ind. Aerod., 96, 2080-2092. https://doi.org/10.1016/j.jweia.2008.02.014
- Yang, Y., Gu, M., Chen, S.Q. and Jin, X.Y. (2009), "New inflow boundary conditions for modeling the neutral equilibrium atmospheric boundary layers in Computational Wind Engineering", J. Wind Eng. Ind. Aerod., 97(2), 88-95. https://doi.org/10.1016/j.jweia.2008.12.001
Cited by
- Steady RANS model of the homogeneous atmospheric boundary layer vol.173, 2018, https://doi.org/10.1016/j.jweia.2017.12.006
- New inflow boundary conditions for modeling twisted wind profiles in CFD simulation for evaluating the pedestrian-level wind field near an isolated building 2018, https://doi.org/10.1016/j.buildenv.2018.01.047
- Numerical study on self-sustainable atmospheric boundary layer considering wind veering based on steady k-ε model vol.30, pp.1, 2017, https://doi.org/10.12989/was.2020.30.1.069
- Correction of Field-Measured Wind Speed Affected by Deterministic Interference Factors vol.12, pp.4, 2017, https://doi.org/10.3390/app12041868