DOI QR코드

DOI QR Code

Mesospheric Temperatures over Apache Point Observatory (32°N, 105°W) Derived from Sloan Digital Sky Survey Spectra

  • Kim, Gawon (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Kim, Yong Ha (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Lee, Young Sun (Department of Astronomy, Space Science and Geology, Chungnam National University)
  • Received : 2017.06.03
  • Accepted : 2017.06.01
  • Published : 2017.06.15

Abstract

We retrieved rotational temperatures from emission lines of the OH airglow (8-3) band in the sky spectra of the Sloan digital sky survey (SDSS) for the period 2000-2014, as part of the astronomical observation project conducted at the Apache Point observatory ($32^{\circ}N$, $105^{\circ}W$). The SDSS temperatures show a typical seasonal variation of mesospheric temperature: low in summer and high in winter. We find that the temperatures respond to solar activity by as much as $1.2K{\pm}0.8K$ per 100 solar flux units, which is consistent with other studies in mid-latitude regions. After the seasonal variation and solar response were subtracted, the SDSS temperature is fairly constant over the 15 year period, unlike cooling trends suggested by some studies. This temperature analysis using SDSS spectra is a unique contribution to the global monitoring of climate change because the SDSS project was established for astronomical purposes and is independent from climate studies. The SDSS temperatures are also compared with mesospheric temperatures measured by the microwave limb sounder (MLS) instrument on board the Aura satellite and the differences are discussed.

Keywords

References

  1. Aihara H, Prieto CA, An D, Anderson SF, Aubourg E, et al., The eighth data release of the Sloan digital sky survey: first data from SDSS-III, Astrophys. J. Suppl. Ser. 193, 29 (2011). https://doi.org/10.1088/0067-0049/193/2/29
  2. Akmaev RA, Fomichev VI, Cooling of the mesosphere and lower thermosphere due to doubling of $CO_2$, Ann. Geophys. 16, 1501-1512 (1998). https://doi.org/10.1007/s00585-998-1501-z
  3. Akmaev RA, Fomichev VI, A model estimate of cooling in the mesosphere and lower thermosphere due to the $CO_2$ increase over the last 3-4 decades, Geophys. Res. Lett. 27, 2113-2116 (2000). https://doi.org/10.1029/1999GL011333
  4. Akmaev RA, Fomichev VI, Zhu X, Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere, J. Atmos. Sol.-Terr.. Phys. 68, 1879-1889 (2006). https://doi.org/10.1016/j.astp.2006.03.008
  5. Beig G, Long-term trends in the temperature of the mesosphere lower thermosphere region: 1. Anthropogenic influences, J. Geophys. Res. 116, A00H11 (2011). https://doi.org/10.1029/2011JA016646
  6. Berger U, Dameris M, Cooling of the upper atmosphere due to $CO_2$ increases: a model study, Ann. Geophys. 11, 809-819 (1993).
  7. Bittner M, Offermann D, Graef HH, Donner M, Hamilton K, An 18-year time series of OH rotational temperatures and middle atmosphere decadal variations, J. Atmos. Sol.-Terr. Phys. 64, 1147-1166 (2002). https://doi.org/10.1016/S1364-6826(02)00065-2
  8. Coxon JA, Foster SC, Rotational analysis of hydroxyl vibration-rotation emission bands: Molecular constants for OH $X^2{\Pi}$, ${\leq}{\nu}{\leq}$, Can. J. Phys. 60, 41-48 (1982). https://doi.org/10.1139/p82-006
  9. Hoffmann P, Rapp M, Singer W, Keuer D, Trends of mesospheric gravity waves at northern middle latitudes during summer, J. Geophys. Res. 116, D00P08 (2011). https://doi.org/10.1029/2011JD015717
  10. Jacobi C, Long-term trends and decadal variability of upper mesosphere/lower thermosphere gravity waves at midlatitudes, J. Atmos. Sol.-Terr. Phys. 118, 90-95 (2014). https://doi.org/10.1016/j.jastp.2013.05.009
  11. Langhoff SR, Werner HJ, Rosmus P, Theoretical transition probabilities for the OH meinel system, J. Mol. Spectrosc. 118, 507-529 (1986). https://doi.org/10.1016/0022-2852(86)90186-4
  12. Lowe RP, The temperature trend near the mesopause as measured using the hydroxyl airglow, in 2004 AGU Joint Assembly, Montreal, Canada, 17-21 May 2004.
  13. Offermann D, Hoffmann P, Knieling P, Koppmann R, Oberheide J, et al., Long-term trends and solar cycle variations of mesospheric temperature and dynamics, J. Geophys. Res. 115, D18127 (2010). https://doi.org/10.1029/2009JD013363
  14. Perminov VI, Semenov AI, Medvedeva IV, Zheleznov YA, Variability of mesopause temperature from the hydroxyl airglow observations over mid-latitudinal sites, Zvenigorod and Tory, Russia, Adv. Space Res. 54, 2511-2517 (2014). https://doi.org/10.1016/j.asr.2014.01.027
  15. Phillips F, Burns GB, French WJR, Williams PFB, Klekociuk AR, et al., Determining rotational temperatures from the OH(8-3) band, and a comparison with OH(6-2) rotational temperatures at Davis, Antarctica, Ann. Geophys. 22, 1549-1561 (2004). https://doi.org/10.5194/angeo-22-1549-2004
  16. Portmann RW, Thomas GE, Solomon S, Garcia RR, The importance of dynamical feedbacks on doubled $CO_2$-induced changes in the thermal structure of the mesosphere, Geophys. Res. Lett. 22, 1733-1736 (1995). https://doi.org/10.1029/95GL01432
  17. Schwartz MJ, Lambert A, Manney GL, Read WG, Livesey NJ, et al., Validation of the aura microwave limb sounder temperature and geopotential height measurements, J. Geophys. Res. 113, D15S11 (2008). https://doi.org/10.1029/2007JD008783
  18. She CY, Thiel SW, Krueger DA, Observed episodic warming at 86 and 100 km between 1990 and 1997: effects of Mount Pinatubo eruption, Geophys. Res. Lett. 25, 497-500 (1998). https://doi.org/10.1029/98GL00178
  19. She CY, Krueger DA, Akmaev R, Schmidt H, Talaat E, et al., Long-term variability in mesopause region temperatures over Fort Collins, Colorado ($41^{\circ}N$, $105^{\circ}W$) based on lidar observations from 1990 through 2007, J. Atmos. Sol.-Terr. Phys. 71, 1558-1564 (2009). https://doi.org/10.1016/j.jastp.2009.05.007
  20. She CY, Krueger DA, Yuan T, Long-term midlatitude mesopause region temperature trend deduced from quarter century (1990-2014) Na lidar observations, Ann. Geophys. 33, 363-369 (2015). https://doi.org/10.5194/angeo-33-363-2015
  21. Sivjee GG, Hamwey RM, Temperature and chemistry of the polar mesopause OH, J. Geophys. Res. 92, 4663-4672 (1987). https://doi.org/10.1029/JA092iA05p04663
  22. Stoughton C, Lupton RH, Bernardi M, Blanton MR, Burles S, et al., Sloan digital sky survey: early data release, Astron. J. 123, 485-548 (2002). https://doi.org/10.1086/324741

Cited by

  1. Mesospheric OH layer altitude at midlatitudes: variability over the Sierra Nevada Observatory in Granada, Spain (37° N, 3° W) vol.35, pp.5, 2017, https://doi.org/10.5194/angeo-35-1151-2017