DOI QR코드

DOI QR Code

Spatial Configuration of Stars Around Three Metal-poor Globular Clusters in the Galatic Bulge, NGC 6266, NGC 6273, and NGC 6681 : Surface Density Map and Radial Density Profile

  • Received : 2017.03.27
  • Accepted : 2017.05.09
  • Published : 2017.06.15

Abstract

We present extra-tidal features of spatial configuration of stars around three metal-poor globular clusters (NGC 6266, NGC 6273, NGC 6681) located in the Galactic bulge. The wide-field photometric data were obtained in BVI bands with the MOSAIC II camera at CTIO 4 m Blanco telescope. The derived color-magnitude diagrams (CMDs) contain stars in a total $71^{\prime}{\times}71^{\prime}$ area including a cluster and its surrounding field outside of the tidal radius of the cluster. Applying statistical filtering technique, we minimized the field star contaminations on the obtained cluster CMDs and extracted the cluster members. On the spatial stellar density maps around the target clusters, we found overdensity features beyond the tidal radii of the clusters. We also found that the radial density profiles of the clusters show departures from the best-fit King model for their outer regions which support the overdensity patterns.

Keywords

References

  1. Bellazzini M, Ferraro FR, Buonanno R, The Sagittarius Dwarf Galaxy Survey (SDGS) - I. Colour-magnitude diagrams, reddening and population gradients. First evidence of a very metal-poor population, Mon. Not. R. Astron. Soc. 304, 633-653 (1999). https://doi.org/10.1046/j.1365-8711.1999.02377.x
  2. Belokurov V, Evans NW, Irwin MJ, Hewett PC, Wilkinson MI, The discovery of tidal tails around the globular cluster NGC 5466, Astrophys. J. Lett. 637, L29-L32 (2006). https://doi.org/10.1086/500362
  3. Capuzzo Dolcetta RC, Di Matteo P, Miocchi P, Formation and evolution of clumpy tidal tails around globular clusters, Astron. J. 129, 1906-1921 (2005). https://doi.org/10.1086/426006
  4. Casetti-Dinescu DI, Girard TM, Korchagin VI, van Altena WF, Lopez CE, Space velocities of southern globular clusters. VI. Nine clusters in the inner Milky Way, Astron. J. 140, 1282-1293 (2010). https://doi.org/10.1088/0004-6256/140/5/1282
  5. Chen CW, Chen WP, Morphological distortion of galactic globular clusters, Astron. J. 721, 1790-1819 (2010). https://doi.org/10.1088/0004-637X/721/2/1790
  6. Chun SH, Kim JW, Sohn ST, Park JH, Han W, et al., A widefield photometric survey for extratidal tails around five metal-poor globular clusters in the galactic halo, Astron. J. 139, 606-625 (2010). https://doi.org/10.1088/0004-6256/139/2/606
  7. Chun SH, Kim JW, Kim MJ, Kim HI, Park JH, et al., A feature of stellar density distribution within the tidal radius of globular cluster NGC 6626 (M28) in the galactic bulge, Astron. J. 144, 26 (2012). https://doi.org/10.1088/0004-6256/144/1/26
  8. Chun SH, Kang M, Jung DS, Sohn YJ, Tidal stripping stellar substructures around four metal-poor globular clusters in the galactic bulge, Astron. J. 149, 29 (2015). https://doi.org/10.1088/0004-6256/149/1/29
  9. Combes F, Leon S, Meylan G, N-body simulations of globular cluster tides, Astron. Astrophys. 352, 149-162 (1999).
  10. Dinescu DI, Girard TM, van Altena WF, Lopez CE, Space velocities of southern globular clusters. IV. First results for inner galaxy clusters, Astron. J. 125, 1373-1382 (2003). https://doi.org/10.1086/367801
  11. Gnedin OY, Ostriker JP, Destruction of the galactic globular cluster system, Astrophys. J. 474, 223-255 (1997). https://doi.org/10.1086/303441
  12. Grillmair CJ, Johnson R, The detection of a $45^{\circ}$ tidal stream associated with the globular cluster NGC 5466, Astrophys. J. 639, L17-L20 (2006). https://doi.org/10.1086/501439
  13. Grillmair CJ, Dionatos O, Detection of a $63^{\circ}$ cold stellar stream in the Sloan digital sky survey, Astrophys. J. Lett. 643, L17-L20 (2006). https://doi.org/10.1086/505111
  14. Grillmair CJ, Freeman KC, Irwin M, Quinn PJ, Globular clusters with tidal tails: deep two-color star counts, Astron. J. 109, 2553-2585 (1995). https://doi.org/10.1086/117470
  15. Grillmair CJ, Ajhar EA, Faber SM, Baum WA, Holtzman JA, et al., Hubble Space Telescope observations of globular clusters in M31. II. Structural parameters, Astron. J. 111, 2293-2302 (1996). https://doi.org/10.1086/117963
  16. Harris WE, A catalog of parameters for globular clusters in the Milky Way, Astron. J. 112, 1487-1488 (1996). https://doi.org/10.1086/118116
  17. Johnston KV, Sigurdsson S, Hernquist L, Measuring massloss rates from galactic satellites, Mon. Not. R. Astron. Soc. 302, 771-789 (1999). https://doi.org/10.1046/j.1365-8711.1999.02200.x
  18. Jordi K, Grebel EK, Search for extratidal features around 17 globular clusters in the Sloan digital sky survey, Astron. Astrophys. 522, A71 (2010). https://doi.org/10.1051/0004-6361/201014392
  19. King IR, The structure of star clusters. III. Some simple dynamical models, Astron. J. 71, 64-75 (1966). https://doi.org/10.1086/109857
  20. King IR, Hedemann Jr. E, Hodge SM, White RE, The structure of star clusters. V. Star counts in 54 globular clusters, Astron. J. 73, 456-491 (1968). https://doi.org/10.1086/110648
  21. Landolt AU, UBVRI photometric standard stars in the magnitude range 11.5-16.0 around the celestial equator, Astron. J. 104, 340-371 (1992). https://doi.org/10.1086/116242
  22. Lauchner A, Powell Jr. WL, Wilhelm R, Discovery of a tidal stream extending from NGC 5053, Astrophys. J. 651, L33-L36 (2006). https://doi.org/10.1086/509254
  23. Law DR, Majewski SR, Skrutskie MF, Carpenter JM, Ayub HF, 2MASS studies of differential reddening across three massive globular clusters, Astron. J. 126, 1871-1887 (2003). https://doi.org/10.1086/377626
  24. Lee KH, Lee HM, Fahlman GG, Lee MG, Wide-field CCD photometry of the globular cluster M92, Asron. J. 126, 815-825 (2003). https://doi.org/10.1086/376738
  25. Lehmann I, Scholz RD, Tidal radii of the globular clusters M 5, M 12, M 13, M 15, M 53, NGC 5053 and NGC 5466 from automated star counts, Astron. Astrophys. 320, 776-782 (1997).
  26. Leon S, Meylann G, Combes F, Tidal tails around 20 Galactic globular clusters. Observational evidence for gravitational disk/bulge shocking, Astron. Astrophys. 359, 907-931 (2000).
  27. Minniti D, Field stars and clusters of the galactic bulge: implications for galaxy formation, Astrophys. J. 459, 175-180 (1996). https://doi.org/10.1086/176879
  28. Montuori M, Capuzzo-Dolcetta R, Di Matteo P, Lepinette A, Miocchi P, Tidal tails around globular clusters: are they a good tracer of cluster orbits?, Astrophys. J. 659, 1212-1221 (2007). https://doi.org/10.1086/512114
  29. Niewderste-Ostholt M, Belokurov V, Evans NW, Koposov S, Gieles M, The tidal tails of the ultrafaint globular cluster Palomar 1, Mon. Not. R. Astron. Soc. 408, L66-L70 (2010). https://doi.org/10.1111/j.1745-3933.2010.00931.x
  30. Odenkirchen M, Grebel EK, Rockosi CM, Dehnen W, Ibata R, et al., Detection of massive tidal tails around the globular cluster Palomar 5 with Sloan digital sky survey commissioning data, Astrophys. J. Lett. 548, L165-L169 (2001). https://doi.org/10.1086/319095
  31. Odenkirchen M, Grebel EK, Dehnen W, Rix HW, Yanny B, et al., The extended tails of Palomar 5: a $10^{\circ}$ arc of globular cluster tidal debris, Astron. J. 126, 2385-2407 (2003). https://doi.org/10.1086/378601
  32. Odenkirchen M, Grebel EK, Kayser A, Rix HW, Dehnen W, Kinematics of the tidal debris of the globular cluster Palomar 5, Astron. J. 137, 3378-3387 (2009). https://doi.org/10.1088/0004-6256/137/2/3378
  33. Ortolani S, Globular clusters and field stars in the bulge, Astrophys. Space Sci. 265, 355-359 (1999). https://doi.org/10.1023/A:1002101003660
  34. Rockosi CM, Odenkirchen M, Grebel EK, Dehnen W, Cudworth KM, et al., A matched-filter analysis of the tidal tails of the globular cluster Palomar 5, Astron. J. 124, 349-363 (2002). https://doi.org/10.1086/340957
  35. Schlegel DJ, Finkbeiner DP, Davis M, Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds, Astrophys. J. 500, 525-553 (1998). https://doi.org/10.1086/305772
  36. Siegel MH, Majewski SR, Cudworth KM, Takamiya M, A cluster's last stand: the death of Palomar 13, Astron. J. 121, 935-950 (2001). https://doi.org/10.1086/318763
  37. Sohn YJ, Park JH, Rey SC, Kim HI, Oh SJ, et al., Wide-field stellar distributions around the remote young galactic globular clusters Palomar 3 and Palomar 4, Astron. J. 126, 803-814 (2003). https://doi.org/10.1086/375907
  38. Stetson PB, DAOPHOT - a computer program for crowdedfield stellar photometry, Publ. Astron. Soc. Pac. 99, 191-222 (1987). https://doi.org/10.1086/131977
  39. Stetson PB, On the growth-curve method for calibrating stellar photometry with CCDs, Publ. Astron. Soc. Pac. 102, 932-948 (1990). https://doi.org/10.1086/132719
  40. Stetson PB, Further progress in CCD photometry, in IAU Colloquium 136, Stellar Photometry - Current Techniques and Future Development, eds. Butler CJ, Elliot I (Cambridge Univ. Press, Cambridge, 1992), 291-303.
  41. Stetson PB, Harris WE, CCD photometry of the globular cluster M92, Astron. J. 96, 909-975 (1988). https://doi.org/10.1086/114856
  42. Testa V, Zaggia SR, Andreon S, Longo G, Scaramella R, et al., Use of DPOSS data to study globular cluster halos: an application to M 92, Astron. Astrophys. 356, 127-133 (2000).
  43. Trager SC, King IR, Djorgovski S, Catalogue of galactic globularcluster surface-brightness profiles, Astron. J. 109, 218-241 (1995). https://doi.org/10.1086/117268
  44. van den Bergh S, Globular clusters and galaxy halos, Publ. Astron. Soc. Pac. 96, 329-338 (1984). https://doi.org/10.1086/131343
  45. White RE, Shawl SJ, Axial ratios and orientations for 100 galactic globular star clusters, Astrophys. J. 317, 246-263 (1987). https://doi.org/10.1086/165273
  46. Yim KJ, Lee HM, Tidal tails of globular clusters, J. Korean Astron. Soc. 35, 75-85 (2002). https://doi.org/10.5303/JKAS.2002.35.2.075
  47. Zoccali M, Renzini A, Ortolani S, Greggio L, Saviane I, et al., Age and metallicity distribution of the galactic bulge from extensive optical and near-IR stellar photometry, Astron. Astrophys. 399, 931-956 (2003). https://doi.org/10.1051/0004-6361:20021604