DOI QR코드

DOI QR Code

A new broadband energy harvester using propped cantilever beam with variable overhang

  • Usharani, R. (Department of Instrumentation and Control Engineering, Seshasayee Institute of Technology) ;
  • Uma, G. (Department of Instrumentation and Control Engineering, National Institute of Technology) ;
  • Umapathy, M. (Department of Instrumentation and Control Engineering, National Institute of Technology) ;
  • Choi, S.B. (Department of Mechanical Engineering, Inha University)
  • Received : 2016.08.29
  • Accepted : 2017.04.18
  • Published : 2017.05.25

Abstract

Design of piezoelectric energy harvester for a wide operating frequency range is a challenging problem and is currently being investigated by many researchers. Widening the operating frequency is required, as the energy is harvested from ambient source of vibration which consists of spectrum of frequency. This paper presents a new technique to increase the operating frequency range which is achieved by designing a harvester featured by a propped cantilever beam with variable over hang length. The proposed piezoelectric energy harvester is modeled analytically using Euler Bernoulli beam theory and the effectiveness of the harvester is demonstrated through experimentation. The results from analytical model and from experimentation reveal that the proposed energy harvester generates an open circuit output voltage ranging from 36.43 V to 11.94 V for the frequency range of 27.24 Hz to 48.47 Hz. The proposed harvester produces continuously varying output voltage and power in the broadened operating frequency range.

Keywords

References

  1. Anton, S.R. and Sodano, H.A. (2007), "A review of power harvesting using piezoelectric materials (2003-2006)", Smart Mater. Struct., 16(3), 1-21. https://doi.org/10.1088/0964-1726/16/1/001
  2. Beeby, S.P., Tudor, M.J. and White, N.M. (2006), "Energy harvesting vibration sources for microsystems applications", Meas. Sci. Technol., 17(12), 175-195. https://doi.org/10.1088/0957-0233/17/12/R01
  3. Chen, SN., Wang, GJ., Chien, MC. (2006), "Analytical modeling of piezoelectric vibration-induced micro power generator, Mechatronics, 16(7), 379-387 https://doi.org/10.1016/j.mechatronics.2006.03.003
  4. Dong, L., Prasad, M.G. and Fisher, F.T. (2016), "Twodimensional resonance frequency tuning approach for vibrationbased energy harvesting", Smart Mater. Struct., 25(6), 065019 (14pp). https://doi.org/10.1088/0964-1726/25/6/065019
  5. Erturk, A. (2009), "Electromechanical modelling of piezoelectric energy harvesters", Ph.D thesis, Virginia Tech, Blacksburg.
  6. Erturk, A. and Inman, D.J. (2008), "A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters", J Vib Acoust, 130(4), 041002(15pp). https://doi.org/10.1115/1.2890402
  7. Erturk, A., Renno, J.M. and Inman, D.J. (2009), "Modeling of Piezoelectric Energy harvesting from an L shaped beam mass structure with an application to UAVs", J. Intel. Mat. Syst. Str., 20(5), 529-544 https://doi.org/10.1177/1045389X08098096
  8. Hoffmann, D., Willmann, A., Hehn, T., Folkmer, B. and Manoli, Y. (2016), "A self-adaptive energy harvesting system", Smart Mater. Struct., 25(3), 035013 (10pp). https://doi.org/10.1088/0964-1726/25/3/035013
  9. Kim, H.S., Kim, J.H. and Kim, J. (2011), "A review of piezoelectric energy harvesting based on vibration", Int. J. Precis. Eng. Manuf., 12(6), 1129-1141. https://doi.org/10.1007/s12541-011-0151-3
  10. Kim, IH., Jung, HJ., Lee, B.M. and Jang, S.J. (2011), "Broadband energy harvesting using two degree of -freedom vibrating body", Appl. Phys. Lett., 98(21), 214102(3pp). https://doi.org/10.1063/1.3595278
  11. Li, P., Liu, Y., Wang, Y., Luo, C., Li, G., Hu, J., Liu, W. and Zhang, W. (2015), "Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure", AIP Advances, 5(4), 047151(8pp). https://doi.org/10.1063/1.4919711
  12. Murphy, J.F. (1997), "Transverse vibration of a simply supported beam with symmetric overhang of arbitrary length", J. Test Eval., 25(5), 522-524. https://doi.org/10.1520/JTE11364J
  13. Niri, E.D. and Salamone, S. (2012), "A passively tunable mechanism for a dual bimorph energy harvester with variable tip stiffness and axial load", Smart Mater. Struct., 21(12), 125025(15pp). https://doi.org/10.1088/0964-1726/21/12/125025
  14. Ou, Q., Chen, X.Q., Gutschmidt, S., Wood, A., Leigh, N. and Arrieta, A.F. (2012), "An experimentally validated double-mass piezoelectric cantilever model for broadband vibration-based energy harvesting", J. Intel. Mat. Syst. Str., 23(2), 117-126. https://doi.org/10.1177/1045389X11431746
  15. Peters, C., Maurath, D., Schock, W., Mezger, F. and Manoli, Y. (2009), "A closed-loop wide-range tunable mechanical resonator for energy harvesting systems", J. Micromech. Microeng., 19(9), 094004(9pp). https://doi.org/10.1088/0960-1317/19/9/094004
  16. Qi, S., Shuttleworth, R., Oyadiji, S.O. and Wright, J. (2010), "Design of multiresonant beam for broadband piezoelectric energy harvesting", Smart Mater. Struct., 19(9), 094009 (10pp) https://doi.org/10.1088/0964-1726/19/9/094009
  17. Salehi-Khojin, A., Bashash, S. and Jalili, N. (2008), "Modeling and experimental vibration analysis of nanomechanical cantilever active probes", J. Micromech. Microeng., 18(8), 085008 (11pp). https://doi.org/10.1088/0960-1317/18/8/085008
  18. Santhosh kumar, B.V.M.P., Suresh, K., Varun Kumar, U., Uma, G. and Umapathy, M. (2012), "Resonance based DC current sensor", Measurement, 45(3), 369-374. https://doi.org/10.1016/j.measurement.2011.11.008
  19. Shahruz, S.M. (2008), "Design of mechanical band-pass filters for energy scavenging: multi-degree-of freedom models", J. Vib. Control, 14(5), 753-768. https://doi.org/10.1177/1077546307083274
  20. Sinha, A. (2010), "Vibration of Mechanical Systems" Cambridge University press, Cambridge, New York,
  21. Su, W.J., Zu, J. and Zhu, Y. (2014), "Design and development of a broadband magnet-induced dual-cantilever piezoelectric energy harvester", J. Intel. Mat. Syst. Str., 25(4) 430-442. https://doi.org/10.1177/1045389X13498315
  22. Tang, L., Yang, Y. and Soh, C.K. (2010), "Toward broadband vibration-based energy harvesting", J. Intel. Mat. Syst. Str., 21(18), 1867-1897. https://doi.org/10.1177/1045389X10390249
  23. Wang, Q. and Wu, N. (2012), "Optimal design of a piezoelectric coupled beam for power harvesting", Smart Mater. Struct., 21(8), 085013 (9pp). https://doi.org/10.1088/0964-1726/21/8/085013
  24. Wu, H., Tang, L., Yang, Y. and Soh, C.K. (2013), "A novel two degrees of freedom piezoelectric energy harvester", J. Intel. Mat. Syst. Str., 24(3), 357-368. https://doi.org/10.1177/1045389X12457254
  25. Xue, H., Hu, Y. and Wang, Q.M. (2008), "Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies", IEEE T. Ultrason. Ferr., 55(9), 2104-2108. https://doi.org/10.1109/TUFFC.903
  26. Yang, Z. and Yang, J. (2009), "Connected vibrating Piezoelectric Bimorph beams as a wide-band piezoelectric power harvester ", J. Intel. Mat. Syst. Str., 20(5), 569-574. https://doi.org/10.1177/1045389X08100042
  27. Zhou, W., Penamalli, G.R. and Zuo, L. (2012), "An efficient vibration energy harvester with a multi-mode dynamic magnifier", Smart Mater. Struct., 21(1), 015014 (9pp) https://doi.org/10.1088/0964-1726/21/1/015014
  28. Zhu, D., Tudor, M.J. and Beeby, S.P. (2010), "Strategies for increasing the operating frequency range of vibration energy harvesters: a review", Meas. Sci. Technol., 21(2), 022001 (29pp). https://doi.org/10.1088/0957-0233/21/2/022001
  29. Zhu, Y., Zu, J. and Su, W. (2013), "Broadband energy harvesting through a piezoelectric beam subjected to dynamic compressive loading", Smart Mater. Struct., 22(4), 045007 (13pp). https://doi.org/10.1088/0964-1726/22/4/045007

Cited by

  1. A Novel Piezoelectric Energy Harvester Using a Multi-Stepped Beam with Rectangular Cavities vol.8, pp.11, 2018, https://doi.org/10.3390/app8112091
  2. Bridgeless active rectifier for piezoelectric energy harvesting vol.13, pp.7, 2017, https://doi.org/10.1049/iet-cds.2018.5576
  3. A novel control circuit for piezoelectric energy harvesting vol.113, pp.None, 2017, https://doi.org/10.1016/j.mejo.2021.105068
  4. Modifications on F2MC tubes as passive tunable vibration absorbers vol.28, pp.2, 2017, https://doi.org/10.12989/sss.2021.28.2.153