DOI QR코드

DOI QR Code

Thermoelectric viscoelastic materials with memory-dependent derivative

  • Ezzat, Magdy A. (Department of Mathematics, Faculty of Education, Alexandria University) ;
  • El Karamany, Ahmed S. (Department of Mathematical and Physical Sciences, Nizwa University) ;
  • El-Bary, A.A. (Arab Academy for Science and Technology)
  • Received : 2016.09.08
  • Accepted : 2017.02.13
  • Published : 2017.05.25

Abstract

A mathematical model of electro-thermoelasticity has been constructed in the context of a new consideration of heat conduction with memory-dependent derivative. The governing coupled equations with time-delay and kernel function, which can be chosen freely according to the necessity of applications, are applied to several concrete problems. The exact solutions for all fields are obtained in the Laplace transform domain for each problem. According to the numerical results and its graphs, conclusion about the proposed model has been constructed. The predictions of the theory are discussed and compared with dynamic classical coupled theory. The result provides a motivation to investigate conducting thermoelectric viscoelastic materials as a new class of applicable materials.

Keywords

References

  1. Alfrey, T. and Gurnee, E.F. (1956), Rheology: Theory and Applications, Vol. 1. (Editor, Erich, F.R.), Academic Press, New York.
  2. Atkinson, C. and Craster, R. (1995), "Theoretical aspects of fracture mechanics", Progress Aerospace Sci., 31(1) 1-83.
  3. Biot, M. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351
  4. Caputo, M. (1967), "Linear models of dissipation whose Q is almost frequency independent II", Geophys. J. Roy. Astron. Soc., 13(5), 529-539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
  5. Cattaneo, C. (1958), "Sur une forme de l'équation de la Chaleur éliminant le paradoxe d'une propagation instantaneee", C.R. Acad. Sci. Paris, 247(3), 431-433.
  6. Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity, A review of recent literature", Appl. Mech. Rev., 51(12), 705-729. https://doi.org/10.1115/1.3098984
  7. Diethelm, K. (2010), Analysis of Fractional Differential Equation: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer-Verlag, Berlin, Heideberg.
  8. El-Karamany, A.S. and Ezzat, M.A. (2002), "On the boundary integral formulation of thermo-viscoelasticity theory", Int. J. Eng. Sci., 40(17), 1943-1956. https://doi.org/10.1016/S0020-7225(02)00043-5
  9. El-Karamany, A.S. and Ezzat, M.A. (2004), "Boundary integral equation formulation for the generalized thermoviscoelasticity with two relaxation times", Appl. Math. Comput., 151(2), 347-362. https://doi.org/10.1016/S0096-3003(03)00345-X
  10. El-Karamany, A.S. and Ezzat, M.A. (2011a), "On fractional thermoelasticity", Math. Mech. Solids, 16(3), 334-346. https://doi.org/10.1177/1081286510397228
  11. El-Karamany, A.S. and Ezzat, M.A. (2011b), "Convolutional variational principle, reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity", J. Therm. Stress., 34(3), 264-284. https://doi.org/10.1080/01495739.2010.545741
  12. Ezzat, M.A. (2001), "Free convection effects on perfectly conducting fluid", Int. J. Eng. Sci., 39(7), 799-819. https://doi.org/10.1016/S0020-7225(00)00059-8
  13. Ezzat, M.A. (2004), "Fundamental solution in generalized magneto-thermoelasticity with two relaxation times for perfect conductor cylindrical region", Int. J. Eng. Sci., 42(13-14), 1503-1519. https://doi.org/10.1016/j.ijengsci.2003.09.013
  14. Ezzat, M.A. (2006), "The relaxation effects of the volume properties of electrically conducting viscoelastic material", Mat. Sci. Eng. B, 130(1-3), 11-23. https://doi.org/10.1016/j.mseb.2006.01.020
  15. Ezzat, M.A. (2008), "State space approach to solids and fluids", Can. J. Phys. Rev., 86(12), 1241-1250. https://doi.org/10.1139/p08-069
  16. Ezzat, M.A. (2010), "Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer", Phys. B, 405(19), 4188-4194. https://doi.org/10.1016/j.physb.2010.07.009
  17. Ezzat, M.A. (2011a), "Magneto-thermoelasticity with thermoelectric properties an fractional derivative heat transfer", Phys. B, 406(1), 30-35. https://doi.org/10.1016/j.physb.2010.10.005
  18. Ezzat, M.A. (2011b), "Theory of fractional orderin generalized thermoelectric MHD", Appl. Math. Model., 35 (10), 4965-4978. https://doi.org/10.1016/j.apm.2011.04.004
  19. Ezzat, M.A. (2011c), "Thermoelectric MHD with modified Fourier's law", Int. J. Therm. Sci., 50 (4), 449-455. https://doi.org/10.1016/j.ijthermalsci.2010.11.005
  20. Ezzat, M.A. (2012),"State space approach to thermoelectric fluid with fractional order heat transfer", Heat Mass Transfer., 48(1), 71-82. https://doi.org/10.1007/s00231-011-0830-8
  21. Ezzat, M.A. and El-Bary, A.A. (2016), "Effects of variable thermal conductivity and fractional order of heat transfer on a perfect conducting infinitely long hollow cylinder", Int. J. Therm. Sci., 108(10), 62-69. https://doi.org/10.1016/j.ijthermalsci.2016.04.020
  22. Ezzat, M.A. and El-Bary, A.A. (2016a), "Modeling of fractional magneto-thermoelasticity for a perfect conducting materials", Smart Struc. Syst., 18(4), 707-731. https://doi.org/10.12989/sss.2016.18.4.707
  23. Ezzat, M.A. and El-Bary, A.A. (2016b), "Unified fractional derivative models of magneto-thermo-viscoelasticity theory", Arch. Mech., 68(4), 285-308.
  24. Ezzat, M.A. and El-Karamany, A.S. (2002a), "The uniqueness and reciprocitytheorems for generalized thermoviscoelasticity for anisotropicmedia", J. Therm. Stress., 25(6), 507-522. https://doi.org/10.1080/01495730290074261
  25. Ezzat, M.A. and El-Karamany, A.S. (2002b), "The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with two relaxation times", Int. J. Eng. Sci., 40(11), 1275-1284. https://doi.org/10.1016/S0020-7225(01)00099-4
  26. Ezzat, M.A. and El-Karamany, A.S. (2003), "On uniqueness and reciprocity theorems for generalized thermoviscoelasticity with thermal relaxation", Can. J. Phys., 81(6), 823-833. https://doi.org/10.1139/p03-070
  27. Ezzat, M.A. and El-Karamany, A.S. (2011a), "Fractional order theory of a perfect conducting thermoelastic medium", Can. J. Phys., 89 (3), 311-318. https://doi.org/10.1139/P11-022
  28. Ezzat, M.A. and El-Karamany, A.S. (2011b), "Fractional order heat conduction law in magneto-thermoelasticity involving two temperatures", ZAMP, 62(5), 937-952. https://doi.org/10.1007/s00033-011-0126-3
  29. Ezzat, M.A. and El-Karamany, A.S. (2011c), "Theory of fractional order in electro-thermoelasticity", Euro. J. Mech. A- Solid, 30(4), 491-500. https://doi.org/10.1016/j.euromechsol.2011.02.004
  30. Ezzat, M.A. and El-Karamany, A.S. (2012), "Fractional thermoelectric viscoelastic materials", J. Appl. Poly. Sci., 124(3), 2187-2199. https://doi.org/10.1002/app.35243
  31. Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2014), "Generalized thermo-viscoelasticity with memory-dependent derivatives", Int. J. Mech. Sci., 89(12), 470- 475. https://doi.org/10.1016/j.ijmecsci.2014.10.006
  32. Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2015), "Electro-magnetic waves in generalized thermo-viscoelasticity for different theories", Int. J. Appl. Electromag. Applic., 47 (1), 95-111.
  33. Ezzat, M.A., El-Karamany, A.S. and Samaan, A. (2001), "State space formulation to generalized thermoviscoelasticity with thermal relaxation", J. Therm. Stress. 24(9), 823-846. https://doi.org/10.1080/014957301750379612
  34. Ezzat, M.A. and Abd-Elaal, M.Z. (1997a), "Free convection effects on a viscoelastic boundary layer flow with one relaxation time through a porous medium", J. Frank. Ins., 4(4), 685-706.
  35. Ezzat, M.A. and Abd-Elaal, M.Z. (1997b), "State space approach to viscoelastic fluid flow of hydromagnetic fluctuating boundary-layer through a porous medium", ZAMM, 77(3), 197-207. https://doi.org/10.1002/zamm.19970770307
  36. Ezzat, M. A. and Youssef, H.M. (2010), "Stokes' first problem for an electro-conducting micropolar fluid with thermoelectric properties", Can. J. Phys., 88(1), 35-48. https://doi.org/10.1139/P09-100
  37. Ezzat, M.A. and Youssef, H.M. (2014), "Two-temperature theory in three-dimensional Problem for thermoelastic half space subjected to ramp type heating", Mech. Adv. Mater. Struct., 21(4) 293-304.
  38. Ezzat, M.A., Zakaria, M., Shaker, O. and Barakat, F. (1996), "State space formulation to viscoelastic fluid flow of magnetohydrodynamic free convection through a porous medium", Acta Mech., 119(1), 147-164. https://doi.org/10.1007/BF01274245
  39. Ferry, J.D. (1970), Viscoelastic properties of polymers, J. Wiley & Sons, New York.
  40. Fung, Y.C. (1980), Foundations of solid mechanics, Prentice-Hall, Englewood Cliffs, N.J.
  41. Gurtin, M.E. and Sternberg, E. (1962), "On the linear theory of viscoelasticity", Arch.Rat. Mech. Anal., 11(1), 182-191.
  42. Gross, B. (1953), Mathematical Structure of the Theories of Viscoelasticity. Hemann, Paris.
  43. Hetnarski, R.B. and Ignaczak, J. (1999), "Generalized thermoelasticity", J. Therm. Stress., 22(4-5), 451-476. https://doi.org/10.1080/014957399280832
  44. Hicks, L.D. and Dresselhaus, M.S. (1993), "Thermoelectric figure of merit of a one dimensional conductor", Physics Review B 47(24), 16631-16634. https://doi.org/10.1103/PhysRevB.47.16631
  45. Hiroshige, Y., Makoto, O. and Toshima, N. (2007), "Thermoelectric figure-of-merit of iodine-doped copolymer of phenylenevinylene with dialkoxyphenylenevinylene", Synthetic Metals, 157(6) 467- 474. https://doi.org/10.1016/j.synthmet.2007.05.003
  46. Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of the Laplace transform", Comput. Appl. Math., 10(1), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
  47. Ignaczak, J. and Ostoja-starzeweski, M. (2009), Thermoelasticity with finite wave speeds, Oxford University Press, Oxford, UK.
  48. Ilioushin, A. A. (1968), "The approximation method of calculating the constructures by linear thermal viscoelastic theory", Mekhanika Polimerov, Riga, 2, 168-178.
  49. Ilioushin, A.A. and Pobedria, B.E. (1970), Mathematical Theory of Thermal Viscoelasticity, Nauka, Moscow.
  50. Kaliski, S. and Nowacki, W. (1963), "Combined elastic and electro-magnetic waves produced by thermal shock in the case of a medium of finite electric conductivity", Int. J. Eng. Sci., 1(2), 163-175. https://doi.org/10.1016/0020-7225(63)90031-4
  51. Koltunov, M.A. (1976), Creeping and Relaxation, Nauka, Moscow.
  52. Kumar R. and Kumar R. (2013), "Wave propagation at the boundary surface of elastic and initially stressed viscothermoelastic diffusion with voids media", Meccanica, 48(9), 2173-2188. https://doi.org/10.1007/s11012-013-9732-9
  53. Kumar R., Sharma, K.D. and Garg, S.K. (2015), "Fundamental solution in micropolar viscothermoelastic solids with void", Int. J. Appl. Mech Eng., 20(1), 109-125. https://doi.org/10.1515/ijame-2015-0008
  54. Leitman, J.M. and Fisher, G.M.C. (1973), The Linear Theory of Viscoelasticity, In: Handbuch der Physik, vol. VI a/3. Springer-Verlag, Berlin.
  55. Lord, H. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15 (5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
  56. Mahan, G., Sales, B. and Sharp, J. (1997), "Thermoelectric materials: New approaches to an old problem", Phys. Today, 50(3), 42-47. https://doi.org/10.1063/1.881752
  57. Morelli, D.T. (1997), Thermoelectric Devices, In: (Eds., Trigg, G.L. and Immergut, EH.), Encyclopedia of Applied Physics, Wiley-VCH, New York, 21, 339-354.
  58. Pobedria, B.E. (1984), Coupled Problems in Continuum Mechanics, Journal of Durability Plasticity, no. 1, Moscow State University, Moscow.
  59. Podlubny, I. (1999), Fractional Differential Equations, Academic Press, New York.
  60. Povstenko, Y.Z. (2005), "Fractional heat conduction equation and associated thermal stresses", J. Therm. Stress., 28(1), 83-102. https://doi.org/10.1080/014957390523741
  61. Rajagopal, K. and Saccomandi, G. (2007), "On the dynamics of non-linear viscoelastic solids with material moduli that depend upon pressure", Int. J. Eng. Sci., 45 (1) 41-54.
  62. Rowe, D.M. (1995), Handbook of Thermoelectrics, CRC Press.
  63. Sherief, H.H., El-Said, A. and Abd El-Latief, A. (2010), "Fractional order theory of thermoelasticity", Int. J. Solids Struct., 47(2), 269-275. https://doi.org/10.1016/j.ijsolstr.2009.09.034
  64. Shereif, H.H. and Abd El-Latief, A. (2015), "Application of fractional order theory of thermoelasticity to a 1D problem for a half-space", J. Appl. Math. Mech., 94 (6), 509-515.
  65. Shercliff, J.A. (1979), "Thermoelectric magnetohydrodynamics", J. Fluid Mech., 91(3), 231-251. https://doi.org/10.1017/S0022112079000136
  66. Staverman, A.J. and Schwarzl, F. (1956), Die Physik der Hochpolymeren, Vol. 4, (Editor Stuart, H.A.), Springer Verlag, Berlin, Chapt. 1.
  67. Sternberg, E. (1963), "On the analysis of thermal stresses in viscoelastic solids", Brown Univ. Dir. Appl. Math. R, 19(9) 213-219.
  68. Tschoegl, N. (1997), "Time dependence in material properties: An overview", Mech. Time-Depend. Mater., 1(1) 3-31. https://doi.org/10.1023/A:1009748023394
  69. Wang, J.L. and Li, H.F. (2011), "Surpassing the fractional derivative: Concept of the memory-dependent derivative", Comput. Math. Appli., 62(3), 1562-1567. https://doi.org/10.1016/j.camwa.2011.04.028
  70. Yu, Y.J, Hu, W. and Tian, X.G. (2014), "A novel generalized thermoelasticity model based on memory-dependent derivative", Int. J. Eng. Sci., 81(8), 123-134. https://doi.org/10.1016/j.ijengsci.2014.04.014

Cited by

  1. Magneto-electric interactions without energy dissipation for a fractional thermoelastic spherical cavity 2017, https://doi.org/10.1007/s00542-017-3643-y
  2. On dual-phase-lag magneto-thermo-viscoelasticity theory with memory-dependent derivative pp.1432-1858, 2018, https://doi.org/10.1007/s00542-018-4194-6
  3. Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative pp.1619-6937, 2018, https://doi.org/10.1007/s00707-018-2307-z
  4. A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer vol.25, pp.2, 2017, https://doi.org/10.12989/scs.2017.25.2.177
  5. Axisymmetric thermomechanical analysis of transversely isotropic magneto thermoelastic solid due to time-harmonic sources vol.8, pp.5, 2017, https://doi.org/10.12989/csm.2019.8.5.415
  6. Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid vol.70, pp.2, 2017, https://doi.org/10.12989/sem.2019.70.2.245
  7. Effect of inclined load on transversely isotropic magneto thermoelastic rotating solid with time harmonic source vol.8, pp.2, 2017, https://doi.org/10.12989/amr.2019.8.2.083
  8. Thermomechanical interactions in a transversely isotropic magneto thermoelastic solids with two temperatures and rotation due to time harmonic sources vol.8, pp.3, 2017, https://doi.org/10.12989/csm.2019.8.3.219
  9. The effect of modified Ohm’s and Fourier’s laws in generalized magneto-thermo viscoelastic spherical region vol.7, pp.4, 2020, https://doi.org/10.3934/matersci.2020.4.381
  10. Memory response for thermal distributions moving over a magneto-thermoelastic rod under Eringen’s nonlocal theory vol.43, pp.1, 2020, https://doi.org/10.1080/01495739.2019.1676682
  11. Thermoelastic solutions for thermal distributions moving over thin slim rod under memory-dependent three-phase lag magneto-thermoelasticity vol.48, pp.3, 2017, https://doi.org/10.1080/15397734.2019.1620529
  12. Memory response in elasto-thermoelectric spherical cavity vol.9, pp.4, 2020, https://doi.org/10.12989/csm.2020.9.4.325
  13. Effect of thermal laser pulse in transversely isotropic Magneto-thermoelastic solid due to Time-Harmonic sources vol.9, pp.4, 2017, https://doi.org/10.12989/csm.2020.9.4.343
  14. Eigenfunction approach to generalized thermo-viscoelasticity with memory dependent derivative due to three-phase-lag heat transfer vol.43, pp.9, 2017, https://doi.org/10.1080/01495739.2020.1770642
  15. Memory-dependent derivative approach on magneto-thermoelastic transversely isotropic medium with two temperatures vol.15, pp.1, 2020, https://doi.org/10.1186/s40712-020-00122-2
  16. Thermomechanical deformation in a transversely isotropic magneto-thermoelastic rotating solids under initial stress vol.3, pp.None, 2017, https://doi.org/10.1016/j.padiff.2021.100028
  17. Effect of modified Ohm's and Fourier's laws on magneto thermoviscoelastic waves with Green-Naghdi theory in a homogeneous isotropic hollow cylinder vol.8, pp.6, 2021, https://doi.org/10.21833/ijaas.2021.06.005
  18. Vibration analysis of sandwich beam with honeycomb core and piezoelectric facesheets affected by PD controller vol.28, pp.2, 2017, https://doi.org/10.12989/sss.2021.28.2.195
  19. Modeling of Memory Dependent Derivative Under Three-Phase Lag in Generalized Thermo-Viscoelasticity vol.7, pp.6, 2017, https://doi.org/10.1007/s40819-021-01174-4