References
- Alfrey, T. and Gurnee, E.F. (1956), Rheology: Theory and Applications, Vol. 1. (Editor, Erich, F.R.), Academic Press, New York.
- Atkinson, C. and Craster, R. (1995), "Theoretical aspects of fracture mechanics", Progress Aerospace Sci., 31(1) 1-83.
- Biot, M. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351
- Caputo, M. (1967), "Linear models of dissipation whose Q is almost frequency independent II", Geophys. J. Roy. Astron. Soc., 13(5), 529-539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
- Cattaneo, C. (1958), "Sur une forme de l'équation de la Chaleur éliminant le paradoxe d'une propagation instantaneee", C.R. Acad. Sci. Paris, 247(3), 431-433.
- Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity, A review of recent literature", Appl. Mech. Rev., 51(12), 705-729. https://doi.org/10.1115/1.3098984
- Diethelm, K. (2010), Analysis of Fractional Differential Equation: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer-Verlag, Berlin, Heideberg.
- El-Karamany, A.S. and Ezzat, M.A. (2002), "On the boundary integral formulation of thermo-viscoelasticity theory", Int. J. Eng. Sci., 40(17), 1943-1956. https://doi.org/10.1016/S0020-7225(02)00043-5
- El-Karamany, A.S. and Ezzat, M.A. (2004), "Boundary integral equation formulation for the generalized thermoviscoelasticity with two relaxation times", Appl. Math. Comput., 151(2), 347-362. https://doi.org/10.1016/S0096-3003(03)00345-X
- El-Karamany, A.S. and Ezzat, M.A. (2011a), "On fractional thermoelasticity", Math. Mech. Solids, 16(3), 334-346. https://doi.org/10.1177/1081286510397228
- El-Karamany, A.S. and Ezzat, M.A. (2011b), "Convolutional variational principle, reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity", J. Therm. Stress., 34(3), 264-284. https://doi.org/10.1080/01495739.2010.545741
- Ezzat, M.A. (2001), "Free convection effects on perfectly conducting fluid", Int. J. Eng. Sci., 39(7), 799-819. https://doi.org/10.1016/S0020-7225(00)00059-8
- Ezzat, M.A. (2004), "Fundamental solution in generalized magneto-thermoelasticity with two relaxation times for perfect conductor cylindrical region", Int. J. Eng. Sci., 42(13-14), 1503-1519. https://doi.org/10.1016/j.ijengsci.2003.09.013
- Ezzat, M.A. (2006), "The relaxation effects of the volume properties of electrically conducting viscoelastic material", Mat. Sci. Eng. B, 130(1-3), 11-23. https://doi.org/10.1016/j.mseb.2006.01.020
- Ezzat, M.A. (2008), "State space approach to solids and fluids", Can. J. Phys. Rev., 86(12), 1241-1250. https://doi.org/10.1139/p08-069
- Ezzat, M.A. (2010), "Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer", Phys. B, 405(19), 4188-4194. https://doi.org/10.1016/j.physb.2010.07.009
- Ezzat, M.A. (2011a), "Magneto-thermoelasticity with thermoelectric properties an fractional derivative heat transfer", Phys. B, 406(1), 30-35. https://doi.org/10.1016/j.physb.2010.10.005
- Ezzat, M.A. (2011b), "Theory of fractional orderin generalized thermoelectric MHD", Appl. Math. Model., 35 (10), 4965-4978. https://doi.org/10.1016/j.apm.2011.04.004
- Ezzat, M.A. (2011c), "Thermoelectric MHD with modified Fourier's law", Int. J. Therm. Sci., 50 (4), 449-455. https://doi.org/10.1016/j.ijthermalsci.2010.11.005
- Ezzat, M.A. (2012),"State space approach to thermoelectric fluid with fractional order heat transfer", Heat Mass Transfer., 48(1), 71-82. https://doi.org/10.1007/s00231-011-0830-8
- Ezzat, M.A. and El-Bary, A.A. (2016), "Effects of variable thermal conductivity and fractional order of heat transfer on a perfect conducting infinitely long hollow cylinder", Int. J. Therm. Sci., 108(10), 62-69. https://doi.org/10.1016/j.ijthermalsci.2016.04.020
- Ezzat, M.A. and El-Bary, A.A. (2016a), "Modeling of fractional magneto-thermoelasticity for a perfect conducting materials", Smart Struc. Syst., 18(4), 707-731. https://doi.org/10.12989/sss.2016.18.4.707
- Ezzat, M.A. and El-Bary, A.A. (2016b), "Unified fractional derivative models of magneto-thermo-viscoelasticity theory", Arch. Mech., 68(4), 285-308.
- Ezzat, M.A. and El-Karamany, A.S. (2002a), "The uniqueness and reciprocitytheorems for generalized thermoviscoelasticity for anisotropicmedia", J. Therm. Stress., 25(6), 507-522. https://doi.org/10.1080/01495730290074261
- Ezzat, M.A. and El-Karamany, A.S. (2002b), "The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with two relaxation times", Int. J. Eng. Sci., 40(11), 1275-1284. https://doi.org/10.1016/S0020-7225(01)00099-4
- Ezzat, M.A. and El-Karamany, A.S. (2003), "On uniqueness and reciprocity theorems for generalized thermoviscoelasticity with thermal relaxation", Can. J. Phys., 81(6), 823-833. https://doi.org/10.1139/p03-070
- Ezzat, M.A. and El-Karamany, A.S. (2011a), "Fractional order theory of a perfect conducting thermoelastic medium", Can. J. Phys., 89 (3), 311-318. https://doi.org/10.1139/P11-022
- Ezzat, M.A. and El-Karamany, A.S. (2011b), "Fractional order heat conduction law in magneto-thermoelasticity involving two temperatures", ZAMP, 62(5), 937-952. https://doi.org/10.1007/s00033-011-0126-3
- Ezzat, M.A. and El-Karamany, A.S. (2011c), "Theory of fractional order in electro-thermoelasticity", Euro. J. Mech. A- Solid, 30(4), 491-500. https://doi.org/10.1016/j.euromechsol.2011.02.004
- Ezzat, M.A. and El-Karamany, A.S. (2012), "Fractional thermoelectric viscoelastic materials", J. Appl. Poly. Sci., 124(3), 2187-2199. https://doi.org/10.1002/app.35243
- Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2014), "Generalized thermo-viscoelasticity with memory-dependent derivatives", Int. J. Mech. Sci., 89(12), 470- 475. https://doi.org/10.1016/j.ijmecsci.2014.10.006
- Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2015), "Electro-magnetic waves in generalized thermo-viscoelasticity for different theories", Int. J. Appl. Electromag. Applic., 47 (1), 95-111.
- Ezzat, M.A., El-Karamany, A.S. and Samaan, A. (2001), "State space formulation to generalized thermoviscoelasticity with thermal relaxation", J. Therm. Stress. 24(9), 823-846. https://doi.org/10.1080/014957301750379612
- Ezzat, M.A. and Abd-Elaal, M.Z. (1997a), "Free convection effects on a viscoelastic boundary layer flow with one relaxation time through a porous medium", J. Frank. Ins., 4(4), 685-706.
- Ezzat, M.A. and Abd-Elaal, M.Z. (1997b), "State space approach to viscoelastic fluid flow of hydromagnetic fluctuating boundary-layer through a porous medium", ZAMM, 77(3), 197-207. https://doi.org/10.1002/zamm.19970770307
- Ezzat, M. A. and Youssef, H.M. (2010), "Stokes' first problem for an electro-conducting micropolar fluid with thermoelectric properties", Can. J. Phys., 88(1), 35-48. https://doi.org/10.1139/P09-100
- Ezzat, M.A. and Youssef, H.M. (2014), "Two-temperature theory in three-dimensional Problem for thermoelastic half space subjected to ramp type heating", Mech. Adv. Mater. Struct., 21(4) 293-304.
- Ezzat, M.A., Zakaria, M., Shaker, O. and Barakat, F. (1996), "State space formulation to viscoelastic fluid flow of magnetohydrodynamic free convection through a porous medium", Acta Mech., 119(1), 147-164. https://doi.org/10.1007/BF01274245
- Ferry, J.D. (1970), Viscoelastic properties of polymers, J. Wiley & Sons, New York.
- Fung, Y.C. (1980), Foundations of solid mechanics, Prentice-Hall, Englewood Cliffs, N.J.
- Gurtin, M.E. and Sternberg, E. (1962), "On the linear theory of viscoelasticity", Arch.Rat. Mech. Anal., 11(1), 182-191.
- Gross, B. (1953), Mathematical Structure of the Theories of Viscoelasticity. Hemann, Paris.
- Hetnarski, R.B. and Ignaczak, J. (1999), "Generalized thermoelasticity", J. Therm. Stress., 22(4-5), 451-476. https://doi.org/10.1080/014957399280832
- Hicks, L.D. and Dresselhaus, M.S. (1993), "Thermoelectric figure of merit of a one dimensional conductor", Physics Review B 47(24), 16631-16634. https://doi.org/10.1103/PhysRevB.47.16631
- Hiroshige, Y., Makoto, O. and Toshima, N. (2007), "Thermoelectric figure-of-merit of iodine-doped copolymer of phenylenevinylene with dialkoxyphenylenevinylene", Synthetic Metals, 157(6) 467- 474. https://doi.org/10.1016/j.synthmet.2007.05.003
- Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of the Laplace transform", Comput. Appl. Math., 10(1), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
- Ignaczak, J. and Ostoja-starzeweski, M. (2009), Thermoelasticity with finite wave speeds, Oxford University Press, Oxford, UK.
- Ilioushin, A. A. (1968), "The approximation method of calculating the constructures by linear thermal viscoelastic theory", Mekhanika Polimerov, Riga, 2, 168-178.
- Ilioushin, A.A. and Pobedria, B.E. (1970), Mathematical Theory of Thermal Viscoelasticity, Nauka, Moscow.
- Kaliski, S. and Nowacki, W. (1963), "Combined elastic and electro-magnetic waves produced by thermal shock in the case of a medium of finite electric conductivity", Int. J. Eng. Sci., 1(2), 163-175. https://doi.org/10.1016/0020-7225(63)90031-4
- Koltunov, M.A. (1976), Creeping and Relaxation, Nauka, Moscow.
- Kumar R. and Kumar R. (2013), "Wave propagation at the boundary surface of elastic and initially stressed viscothermoelastic diffusion with voids media", Meccanica, 48(9), 2173-2188. https://doi.org/10.1007/s11012-013-9732-9
- Kumar R., Sharma, K.D. and Garg, S.K. (2015), "Fundamental solution in micropolar viscothermoelastic solids with void", Int. J. Appl. Mech Eng., 20(1), 109-125. https://doi.org/10.1515/ijame-2015-0008
- Leitman, J.M. and Fisher, G.M.C. (1973), The Linear Theory of Viscoelasticity, In: Handbuch der Physik, vol. VI a/3. Springer-Verlag, Berlin.
- Lord, H. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15 (5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Mahan, G., Sales, B. and Sharp, J. (1997), "Thermoelectric materials: New approaches to an old problem", Phys. Today, 50(3), 42-47. https://doi.org/10.1063/1.881752
- Morelli, D.T. (1997), Thermoelectric Devices, In: (Eds., Trigg, G.L. and Immergut, EH.), Encyclopedia of Applied Physics, Wiley-VCH, New York, 21, 339-354.
- Pobedria, B.E. (1984), Coupled Problems in Continuum Mechanics, Journal of Durability Plasticity, no. 1, Moscow State University, Moscow.
- Podlubny, I. (1999), Fractional Differential Equations, Academic Press, New York.
- Povstenko, Y.Z. (2005), "Fractional heat conduction equation and associated thermal stresses", J. Therm. Stress., 28(1), 83-102. https://doi.org/10.1080/014957390523741
- Rajagopal, K. and Saccomandi, G. (2007), "On the dynamics of non-linear viscoelastic solids with material moduli that depend upon pressure", Int. J. Eng. Sci., 45 (1) 41-54.
- Rowe, D.M. (1995), Handbook of Thermoelectrics, CRC Press.
- Sherief, H.H., El-Said, A. and Abd El-Latief, A. (2010), "Fractional order theory of thermoelasticity", Int. J. Solids Struct., 47(2), 269-275. https://doi.org/10.1016/j.ijsolstr.2009.09.034
- Shereif, H.H. and Abd El-Latief, A. (2015), "Application of fractional order theory of thermoelasticity to a 1D problem for a half-space", J. Appl. Math. Mech., 94 (6), 509-515.
- Shercliff, J.A. (1979), "Thermoelectric magnetohydrodynamics", J. Fluid Mech., 91(3), 231-251. https://doi.org/10.1017/S0022112079000136
- Staverman, A.J. and Schwarzl, F. (1956), Die Physik der Hochpolymeren, Vol. 4, (Editor Stuart, H.A.), Springer Verlag, Berlin, Chapt. 1.
- Sternberg, E. (1963), "On the analysis of thermal stresses in viscoelastic solids", Brown Univ. Dir. Appl. Math. R, 19(9) 213-219.
- Tschoegl, N. (1997), "Time dependence in material properties: An overview", Mech. Time-Depend. Mater., 1(1) 3-31. https://doi.org/10.1023/A:1009748023394
- Wang, J.L. and Li, H.F. (2011), "Surpassing the fractional derivative: Concept of the memory-dependent derivative", Comput. Math. Appli., 62(3), 1562-1567. https://doi.org/10.1016/j.camwa.2011.04.028
- Yu, Y.J, Hu, W. and Tian, X.G. (2014), "A novel generalized thermoelasticity model based on memory-dependent derivative", Int. J. Eng. Sci., 81(8), 123-134. https://doi.org/10.1016/j.ijengsci.2014.04.014
Cited by
- Magneto-electric interactions without energy dissipation for a fractional thermoelastic spherical cavity 2017, https://doi.org/10.1007/s00542-017-3643-y
- On dual-phase-lag magneto-thermo-viscoelasticity theory with memory-dependent derivative pp.1432-1858, 2018, https://doi.org/10.1007/s00542-018-4194-6
- Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative pp.1619-6937, 2018, https://doi.org/10.1007/s00707-018-2307-z
- A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer vol.25, pp.2, 2017, https://doi.org/10.12989/scs.2017.25.2.177
- Axisymmetric thermomechanical analysis of transversely isotropic magneto thermoelastic solid due to time-harmonic sources vol.8, pp.5, 2017, https://doi.org/10.12989/csm.2019.8.5.415
- Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid vol.70, pp.2, 2017, https://doi.org/10.12989/sem.2019.70.2.245
- Effect of inclined load on transversely isotropic magneto thermoelastic rotating solid with time harmonic source vol.8, pp.2, 2017, https://doi.org/10.12989/amr.2019.8.2.083
- Thermomechanical interactions in a transversely isotropic magneto thermoelastic solids with two temperatures and rotation due to time harmonic sources vol.8, pp.3, 2017, https://doi.org/10.12989/csm.2019.8.3.219
- The effect of modified Ohm’s and Fourier’s laws in generalized magneto-thermo viscoelastic spherical region vol.7, pp.4, 2020, https://doi.org/10.3934/matersci.2020.4.381
- Memory response for thermal distributions moving over a magneto-thermoelastic rod under Eringen’s nonlocal theory vol.43, pp.1, 2020, https://doi.org/10.1080/01495739.2019.1676682
- Thermoelastic solutions for thermal distributions moving over thin slim rod under memory-dependent three-phase lag magneto-thermoelasticity vol.48, pp.3, 2017, https://doi.org/10.1080/15397734.2019.1620529
- Memory response in elasto-thermoelectric spherical cavity vol.9, pp.4, 2020, https://doi.org/10.12989/csm.2020.9.4.325
- Effect of thermal laser pulse in transversely isotropic Magneto-thermoelastic solid due to Time-Harmonic sources vol.9, pp.4, 2017, https://doi.org/10.12989/csm.2020.9.4.343
- Eigenfunction approach to generalized thermo-viscoelasticity with memory dependent derivative due to three-phase-lag heat transfer vol.43, pp.9, 2017, https://doi.org/10.1080/01495739.2020.1770642
- Memory-dependent derivative approach on magneto-thermoelastic transversely isotropic medium with two temperatures vol.15, pp.1, 2020, https://doi.org/10.1186/s40712-020-00122-2
- Thermomechanical deformation in a transversely isotropic magneto-thermoelastic rotating solids under initial stress vol.3, pp.None, 2017, https://doi.org/10.1016/j.padiff.2021.100028
- Effect of modified Ohm's and Fourier's laws on magneto thermoviscoelastic waves with Green-Naghdi theory in a homogeneous isotropic hollow cylinder vol.8, pp.6, 2021, https://doi.org/10.21833/ijaas.2021.06.005
- Vibration analysis of sandwich beam with honeycomb core and piezoelectric facesheets affected by PD controller vol.28, pp.2, 2017, https://doi.org/10.12989/sss.2021.28.2.195
- Modeling of Memory Dependent Derivative Under Three-Phase Lag in Generalized Thermo-Viscoelasticity vol.7, pp.6, 2017, https://doi.org/10.1007/s40819-021-01174-4