References
- Aktan, A.E., Helmicki, A.J. and Hunt, V.J. (1998), "Issues in health monitoring for intelligent infrastructure", Smart Mater. Struct., 7(5), 674. https://doi.org/10.1088/0964-1726/7/5/011
- Achenbach, J. (2012), Wave Propagation in Elastic Solids (Vol. 16). Elsevier, Amsterdam, Netherlands.
- Bahei-El-Din, Y.A., Saleh, A.M., and Talaat, M.M. (2003), "Electro-mechanical impedance technique for health monitoring of concrete structures", J. Eng. Appl. Sci. Cairo, 50(6), 1111-1124.
- Bernard, O., Ulm, F.J. and Lemarchand, E. (2003), "A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials", Cement Concrete Res., 33(9), 1293-1309. https://doi.org/10.1016/S0008-8846(03)00039-5
- Brigham, E.O. and Brigham, E.O. (1974), The fast Fourier transform (Vol. 7). Englewood Cliffs, NJ: Prentice-Hall.
- Caicedo, J.M. (2011), "Practical guidelines for the natural excitation technique (NExT) and the eigensystem realization algorithm (ERA) for modal identification using ambient vibration", Exper. Techniques, 35(4), 52-58. https://doi.org/10.1111/j.1747-1567.2010.00643.x
- Chang, P.C., Flatau, A. and Liu, S.C. (2003), "Review paper: health monitoring of civil infrastructure", Struct. Health Monit., 2(3), 257-267. https://doi.org/10.1177/1475921703036169
- Chang, K.C. and Kim, C.W. (2016), "Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge", Eng. Struct., 122, 156-173. https://doi.org/10.1016/j.engstruct.2016.04.057
- Chase, J.G., Barroso, L.R. and Hwang, K.S. (2004), "LMS-based structural health monitoring methods for the ASCE benchmark problem", Proceedings of the American Control Conference 2004, Boston, June.
- Clayton, E.H., Qian, Y., Orjih, O., Dyke, S.J., Mita, A. and Lu, C. (2006), "Off-the-shelf modal analysis: Structural health monitoring with motes", Proceedings of the 24th International Modal Analysis Conference. St. Louis, 2006, January.
- Doebling, S.W., Farrar, C.R., Prime, M.B. and Shevitz, D.W. (1996), Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in their Vibration Characteristics: A Literature Review (No. LA--13070-MS), Los Alamos National Lab., NM, United States.
- Gentile, C., Saisi, A., and Cabboi, A. (2015), "Structural identification of a masonry tower based on operational modal analysis". Int. J. Architect. Heritage, 9(2), 98-110. https://doi.org/10.1080/15583058.2014.951792
- Gu, H., Song, G., Dhonde, H., Mo, Y.L. and Yan, S. (2006), "Concrete early-age strength monitoring using embedded piezoelectric transducers", Smart Mater. Struct., 15(6), 1837. https://doi.org/10.1088/0964-1726/15/6/038
- Guo, H., Xiao, G., Mrad, N. and Yao, J. (2011), "Fiber optic sensors for structural health monitoring of air platforms", Sensors, 11(4), 3687-3705. https://doi.org/10.3390/s110403687
- Giurgiutiu, V. (2007), Structural Health Monitoring: with Piezoelectric Wafer Active Sensors, Academic Press, Massachusetts, U.S.
- Haranki, B. (2009), "Strength, modulus of elasticity, creep and shrinkage of concrete used in Florida", Ph.D. Dissertation, University of Florida, Gainesville.
- Hearn, G. and Testa, R.B. (1991), "Modal analysis for damage detection in structures", J. Struct. Eng. - ASCE, 117(10), 3042-3063. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:10(3042)
- Ibrahim, S.R. and Mikulcik, E.C. Mikulcik (1973), "A time domain modal vibration test technique", Shock Vib. Bul., 43, 21-37.
- Ibrahim, S.R. and Pappa, R.S. (1982), "Large modal survey testing using the Ibrahim time domain identification technique", J. Spacecraft Rockets, 19(5), 459-465. https://doi.org/10.2514/3.62285
- James III, G.H., Carne, T.G. and Lauffer, J.P. (1993), The Natural Excitation Technique (NExT) for Modal Parameter Extraction from Operating Wind Turbines (No. SAND--92-1666). Sandia National Labs., Albuquerque, NM (United States).
- Leung, C.K., Wan, K.T., Inaudi, D., Bao, X., Habel, W., Zhou, Z., and Imai, M. (2015), "Review: optical fiber sensors for civil engineering applications", Mater. Struct., 48(4), 871-906. https://doi.org/10.1617/s11527-013-0201-7
- Noguchi, T., Tomosawa, F., Nemati, K.M., Chiaia, B.M. and Fantilli, A.P. (2009), "A practical equation for elastic modulus of concrete", ACI Struct. J., 106(5), 690.
- Park, G., Cudney, H.H., and Inman, D.J. (2000), "Impedancebased health monitoring of civil structural components", J. Infrastruct. Syst., 6(4), 153-160. https://doi.org/10.1061/(ASCE)1076-0342(2000)6:4(153)
- Prashant, S.W., Chougule, V.N. and Mitra, A.C. (2015), "Investigation on modal parameters of rectangular cantilever beam using Experimental modal analysis", Mater. Today: Proceedings, 2(4), 2121-2130.
- Quinquis, A. (2010), Digital Signal Processing using MATLAB (Vol. 14). John Wiley & Sons, New Jersy.
- Roy, S., Ladpli, P. and Chang, F.K. (2015), "Load monitoring and compensation strategies for guided-waves based structural health monitoring using piezoelectric transducers", J. Sound Vib., 351, 206-220. https://doi.org/10.1016/j.jsv.2015.04.019
- Song, G., Gu, H., Mo, Y.L., Hsu, T.T.C. and Dhonde, H. (2007), "Concrete structural health monitoring using embedded piezoceramic transducers", Smart Mater. Struct., 16(4), 959. https://doi.org/10.1088/0964-1726/16/4/003
- Song, G., Gu, H. and Mo, Y.L. (2011), "Piezoceramic-based smart aggregate for unified performance monitoring of concrete structures". U.S. Patent No. 7,987,728. Washington, DC: U.S. Patent and Trademark Office.
- Stoica, P. and Moses, R.L. (2005), Spectral Analysis of Signals (Vol. 452). Upper Saddle River, NJ: Pearson Prentice Hall.
- Su, H., Zhang, N., Yang, M. and Cai, S. (2014), Testing device capable of identifying natural vibration frequency of hydraulic concrete structure, Chinese patent CN203432772 U, Nanjing, China.
- Su, H., Zhang, N., Yang, M., Wen, Z. and Xie, W. (2015), "Experimental study on natural vibration frequency identification of hydraulic concrete structure using concrete piezoceramic smart module", J. Vibroengineering, 17(7).
- Su, H., Zhang, N., Wen, Z. and Li, H. (2016), "Experimental study on obtaining hydraulic concrete strength by use of concrete piezoelectric ceramic smart module pairs", J. Intel. Mat. Syst. Str., 27(5), 666-678. https://doi.org/10.1177/1045389X15575089
- Tennyson, R.C., Mufti, A.A., Rizkalla, S., Tadros, G. and Benmokrane, B. (2001), "Structural health monitoring of innovative bridges in Canada with fiber optic sensors", Smart Mater. Struct., 10(3), 560. https://doi.org/10.1088/0964-1726/10/3/320
- Tomosawa, F. and Noguchi, T. (1993), "Relationship between compressive strength and modulus of elasticity of high-strength concrete", Proceedings of the 3rd International Symposium on Utilization of High-Strength Concrete, Lillehammer, June.
- Xu, D., Banerjee, S., Wang, Y., Huang, S. and Cheng, X. (2015), "Temperature and loading effects of embedded smart piezoelectric sensor for health monitoring of concrete structures", Constr. Build. Mater., 76, 187-193. https://doi.org/10.1016/j.conbuildmat.2014.11.067
- Zhang, X. and Jia, Y. (2005), "A soft decision based noise cross power spectral density estimation for two-microphone speech enhancement systems", Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, March.
Cited by
- Deformation and failure mechanism exploration of surrounding rock in huge underground cavern vol.72, pp.2, 2017, https://doi.org/10.12989/sem.2019.72.2.275
- An analytical approach of behavior change for concrete dam by panel data model vol.36, pp.5, 2017, https://doi.org/10.12989/scs.2020.36.5.521
- Time Reverse Modeling of Damage Detection in Underwater Concrete Beams Using Piezoelectric Intelligent Modules vol.20, pp.24, 2017, https://doi.org/10.3390/s20247318