Acknowledgement
Supported by : National Research Foundation of Korea(NRF), Korea Agency for Infrastructure Technology Advancement (KAIA)
References
- Aggarwal, S. and Hozalski, R.M. (2010), "Determination of biofilm mechanical properties from tensile tests performed using a micro-cantilever method", Biofouling, 26(4), 479-486. https://doi.org/10.1080/08927011003793080
- Baniasadi, M., Xu, Z., Gandee, L., Du, Y., Lu, H., Zimmern P. and Minary-Jolandan, M. (2014), "Nanoindentation of Pseudomonas aeruginosa bacterial biofilm using atomic force microscopy", Mater. Res. Express, 1(4), 045411. https://doi.org/10.1088/2053-1591/1/4/045411
- Cense, A.W., Peeter, E.A.G., Gottenbos, B., Baaijens, F.P.T., Nuijs, A.M. and Dongen, M.E.H. (2006), "Mechanical properties and failure of Streptococcus mutans biofilms, studies using a microindentation device", J. Microbiol. Methods, 67(3), 463-472. https://doi.org/10.1016/j.mimet.2006.04.023
-
Chang, I. and Cho, G.-C. (2012), "Strengthening of Korean residual soil with
${\beta}$ -1,3/1,6-glucan biopolymer", Constr. Build. Mater., 30, 30-35. https://doi.org/10.1016/j.conbuildmat.2011.11.030 -
Chang, I. and Cho, G.C. (2014), "Geotechnical behavior of a
${\beta}$ -1,3/1,6-glucan biopolymer-treated residual soil", Geomech. Eng., Int. J., 7(6), 633-647. https://doi.org/10.12989/gae.2014.7.6.633 - Chang, I., Im, J., Prasidhi, A.K, and Cho, G.C. (2015), "Effects of Xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026
- Chang, I., Im, J. and Cho, G.C. (2016), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj-2015-0475
- Dennis, M. and Turner, J. (1998), "Hydraulic conductivity of compacted soil treated with biofilm", J. Geotech. Geoenviron. Eng., 124(2), 120-127. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:2(120)
- Donlan, R.M. (2002), "Biofilms: Microbial Life on Surfaces", Emerg. Infect. Diseases, 8(9), 881-890. https://doi.org/10.3201/eid0809.020063
- Huang, Q., Wu, H., Cai, P., Fein, J.B. and Chen, W. (2015), "Atomic force microscopy measurements of bacterial adhesion onto clay sized particles", Scientific Reports, 5, 16587. https://doi.org/10.1038/srep16587
- Hertz, H. (1882), "Uber die Beruhrung fester elastischer Korper", Journal fur die reine und angewandte Mathematik, 92, 156-171.
- Ivanov, V. and Chu, J. (2008), "Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ", Rev. Environ. Sci. Bio/Technology, 7(2), 139-153. https://doi.org/10.1007/s11157-007-9126-3
- Korstgens, V., Flemming, H., Wingerder, J. and Borchard, W. (2001), "Uniaxial compression measurement device for investigation of the mechanical stability of biofilms", J. Microbiol. Methods, 46(1), 9-17. https://doi.org/10.1016/S0167-7012(01)00248-2
- Kundukad, B., Sevious, T., Liang, Y., Rice, S.A., Kjelleberg, S. and Doyle, P.S. (2016), "Mechanical properties of the superficial biofilm layer determine the architecture of biofilms", Soft Matter, 12, 5718-5726. https://doi.org/10.1039/C6SM00687F
- Laspidou, C. and Aravas, N. (2007), "Variation in the mechanical properties of a porous multi-phase biofilm under compression due to void closure", Water Sci. Technol., 55(8-9), 447-453. https://doi.org/10.2166/wst.2007.289
- Lau, P.C.Y., Dutcher, J.R., Beveridge, T.J. and Lam, J.S. (2009), "Absolute Quantitation of bacterial biofilm adhesion and viscoelasticity by microbead force spectroscopy", Biophys. J., 96(7), 2935-2948. https://doi.org/10.1016/j.bpj.2008.12.3943
- Lewandowski, Z. and Beyenal, H. (2013), Fundamentals of Biofilm Research, (2nd Ed.), CRC press, Taylor & Francisco Group, New York, NY, USA.
- Sidik, W.S., Canakci, H., Kilic, I.H. and Celic, F. (2014), "Applicability of biocementation for organic soil and its effect on permeability", Geomech. Eng., Int. J., 7(6), 649-663. https://doi.org/10.12989/gae.2014.7.6.649
- Stoodley, P., Lewandowski, Z., Boyle, J.D. and Lappin-Scott, H.M. (1999), "Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: An in situ investigation of biofilm rheology", Biotech. Bioeng., 65(1), 83-92. https://doi.org/10.1002/(SICI)1097-0290(19991005)65:1<83::AID-BIT10>3.0.CO;2-B
- Stoodley, P., Cargo, R., Rupp, C.J., Wilson, S. and Klapper, I. (2002), "Biofilm material properties as related to shear-induced deformation and detachment phenomena", J. Indust. Microbiol. Biotechnol., 29(6), 361-367. https://doi.org/10.1038/sj.jim.7000282
- Thullner, M., Zeyer, J. and Kinzelbach, W. (2002), "Influence of microbial growth on hydraulic properties of pore networks", Transp. Porous Media, 49(1), 99-122. https://doi.org/10.1023/A:1016030112089
- Touhami, A., Nysten, B. and Dufrene, Y.F. (2003), "Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy, Langmuir, 19(11), 4539-4543. https://doi.org/10.1021/la034136x
- Venkateswaran, K., Moser, D.P., Dollhopf, M.E., Lies, D.P., Saffarini, D.A., MacGregor, B.J., Ringelberg, D.B., White, D.C., Nishijima, M., Sano, Hiroshi., Burghardt, J., Stackebrandt, E. and Nealson, K.H. (1999), "Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp", Int. J. System. Bacteriol., 49, 705-724 https://doi.org/10.1099/00207713-49-2-705
- Yasodian, S.E., Dutta, R.K., Mathew, L., Anima, T.M. and Seena, S.B. (2012), "Effect of microorganism on engineering properties of cohesive soils", Geomech. Eng., Int. J., 4(2), 135-150. https://doi.org/10.12989/gae.2012.4.2.135
Cited by
- Seismic responses of a metro tunnel in a ground fissure site vol.15, pp.2, 2017, https://doi.org/10.12989/gae.2018.15.2.775
- Prediction models of the shear modulus of normal or frozen soil-rock mixtures vol.15, pp.2, 2017, https://doi.org/10.12989/gae.2018.15.2.783
- Mechanical behaviour of biocemented sand under triaxial consolidated undrained or constant shear drained conditions vol.17, pp.5, 2017, https://doi.org/10.12989/gae.2019.17.5.497
- Stiffness loss in enzyme-induced carbonate precipitated sand with stress scenarios vol.20, pp.2, 2020, https://doi.org/10.12989/gae.2020.20.2.165
- Enzyme induced carbonate precipitation for soil internal erosion control under water seepage vol.26, pp.3, 2017, https://doi.org/10.12989/gae.2021.26.3.289
- Seismic earth pressure on embankment gravity retaining wall with nonuniform slope vol.26, pp.5, 2021, https://doi.org/10.12989/gae.2021.26.5.415
- Modeling of biofilm growth and the related changes in hydraulic properties of porous media vol.12, pp.5, 2017, https://doi.org/10.12989/mwt.2021.12.5.217