과제정보
연구 과제 주관 기관 : National Research Foundation of Korea (NRF)
참고문헌
- Ayeldeen, M.K., Negm, A.M. and El Sawwaf, M.A. (2016), "Evaluating the physical characteristics of biopolymer/soil mixtures", Arab. J. Geosci., 9(5), 1-13. https://doi.org/10.1007/s12517-015-2098-7
- Barrere, G.C., Barber, C.E. and Daniels, M.J. (1986), "Molecular cloning of genes involved in the production of the extracellular polysaccharide xanthan by Xanthomonas campestris pv. campestris", Int. J. Biol. Macromol., 8(6), 372-374. https://doi.org/10.1016/0141-8130(86)90058-9
- Bouazza, A., Gates, W.P. and Ranjith, P.G. (2009), "Hydraulic conductivity of biopolymer-treated silty sand", Geotechnique, 59(1), 71-72. https://doi.org/10.1680/geot.2007.00137
- British Standards (1990a), BS 1377-2 Methods of test for soils for civil engineering purposes. Classification tests; British Standards Institution, London, UK.
- British Standards (1990b), BS 1377-4 Methods of test for soils for civil engineering purposes/Compactionrelated tests; British Standards Institution, London, UK.
- British Standards (1990c), BS 1377-7: Methods of test for soils for civil engineering purposes. Shear strength tests (total stress); British Standard Institute.
- Cabalar, A.F. and Canakci, H. (2011), "Direct shear tests on sand treated with xanthan gum", Proceedings of the Institution of Civil Engineers - Ground Improvement, 164(2), 57-64. https://doi.org/10.1680/grim.800041
-
Chang, I. and Cho, G.-C. (2012), "Strengthening of Korean residual soil with
${\beta}$ -1,3/1,6-glucan biopolymer", Constr. Build. Mater., 30, 30-35. https://doi.org/10.1016/j.conbuildmat.2011.11.030 - Chang, I. and Cho, G.-C. (2014), "Geotechnical behavior of a beta-1,3/1,6-glucan biopolymer-treated residual soil", Geomech. Eng., Int. J., 7(6), 633-647. https://doi.org/10.12989/gae.2014.7.6.633
- Chang, I., Im, J. and Cho, G.-C. (2016a), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj-2015-0475
- Chang, I., Im, J. and Cho, G.-C. (2016b), "Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering", Sustainability, 8(3), 251. https://doi.org/10.3390/su8030251
- Chang, M., Mao, T.-W. and Huang, R.-C. (2016c), "A study on the improvements of geotechnical properties of in-situ soils by grouting", Geomech. Eng., Int. J., 10(4), 527-546. https://doi.org/10.12989/gae.2016.10.4.527
- Chang, I., Im, J., Prasidhi, A.K. and Cho, G.-C. (2015a), "Effects of Xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026
- Chang, I., Jeon, M. and Cho, G.-C. (2015b), "Application of microbial biopolymers as an alternative construction binder for earth buildings in underdeveloped countries", Int. J. Polym. Sci., Article ID 326745.
- Chang, I., Prasidhi, A.K., Im, J., and Cho, G.-C. (2015c), "Soil strengthening using thermo-gelation biopolymers", Constr. Build. Mater., 77, 430-438. https://doi.org/10.1016/j.conbuildmat.2014.12.116
- Chang, I., Prasidhi, A.K., Im, J., Shin, H.-D. and Cho, G.-C. (2015d), "Soil treatment using microbial biopolymers for anti-desertification purposes", Geoderma, 253-254, 39-47. https://doi.org/10.1016/j.geoderma.2015.04.006
- Chen, C.S.H. and Sheppard, E.W. (1980), "Conformation and shear stability of xanthan gum in solution", Polym. Eng. Sci., 20(7), 512-516. https://doi.org/10.1002/pen.760200712
- Chen, R., Zhang, L. and Budhu, M. (2013), "Biopolymer stabilization of mine tailings", J. Geotech. Geoenviron. Eng., 139(10), 1802-1807. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000902
- DeJong, J.T., Fritzges, M.B. and Nusslein, K. (2006), "Microbially induced cementation to control sand response to undrained shear", J. Geotech. Geoenviron. Eng., 132(11), 1381-1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381)
- Franklin, J. and Chandra, R. (1972), "The slake-durability test", Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 9(3), 325-328. https://doi.org/10.1016/0148-9062(72)90001-0
- Garcia-Ochoa, F., Santos, V.E., Casas, J.A. and Gomez, E. (2000), "Xanthan gum: Production, recovery, and properties", Biotechnol. Adv., 18(7), 549-579. https://doi.org/10.1016/S0734-9750(00)00050-1
- Glennie, K.W., Singhvi, A.K., Lancaster, N. and Teller, J.T. (2002), "Quaternary climatic changes over Southern Arabia and the Thar Desert, India", Geological Society, London, Special Publications, 195(1), 301-316. https://doi.org/10.1144/GSL.SP.2002.195.01.16
- Hassler, R.A. and Doherty, D.H. (1990), "Genetic engineering of polysaccharide structure: production of variants of xanthan gum in Xanthomonas campestris", Biotechnol. Progr., 6(3), 182-187. https://doi.org/10.1021/bp00003a003
- Ivanov, V. and Chu, J. (2008), "Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ", Rev. Environ. Sci. Biotechnol., 7(2), 139-153. https://doi.org/10.1007/s11157-007-9126-3
- Khachatoorian, R., Petrisor, I.G., Kwan, C.-C. and Yen, T.F. (2003), "Biopolymer plugging effect: laboratory-pressurized pumping flow studies", J. Petrol. Sci. Eng., 38(1-2), 13-21. https://doi.org/10.1016/S0920-4105(03)00019-6
- Khalaf, F.I. and Gharib, I.M. (1985), "Roundness parameters of quartz grains of Recent aeolian sand deposits in Kuwait", Sediment. Geol., 45(1), 147-158. https://doi.org/10.1016/0037-0738(85)90028-4
- Khatami, H., and O'Kelly, B. (2013), "Improving mechanical properties of sand using biopolymers", J. Geotech. Geoenviron. Eng., 139(8), 1402-1406. DOI: 10.1061/(ASCE)GT.1943-5606.0000861
- Lorenzo, G. and Bergado, D. (2004), "Fundamental parameters of cement-admixed clay - new approach", J. Geotech. Geoenviron. Eng., 130(10), 1042-1050. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1042)
- Milas, M. and Rinaudo, M. (1986), "Properties of xanthan gum in aqueous solutions: Role of the conformational transition", Carbohyd. Res., 158, 191-204. https://doi.org/10.1016/0008-6215(86)84017-4
- Mitchell, J. and Santamarina, J. (2005), "Biological Considerations in Geotechnical Engineering", J. Geotech. Geoenviron. Eng., 131(10), 1222-1233. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222)
- Nugent, R.A., Zhang, G.P. and Gambrell, R.P. (2009), "Effect of exopolymers on the liquid limit of clays and its engineering implications", Transport. Res. Record, 2101, 34-43. https://doi.org/10.3141/2101-05
- Pease, P.P. and Tchakerian, V.P. (2002), "Composition and sources of sand in the Wahiba Sand Sea, Sultanate of Oman", Ann. Assoc. Am. Geograph., 92(3), 416-434. https://doi.org/10.1111/1467-8306.00297
- Pease, P.P., Bierly, G.D., Tchakerian, V.P. and Tindale, N.W. (1999), "Mineralogical characterization and transport pathways of dune sand using Landsat TM data, Wahiba Sand Sea, Sultanate of Oman", J. Geomorphol., 29(3-4), 235-249. https://doi.org/10.1016/S0169-555X(99)00029-X
- Qureshi, M.U., Bessaih, N., Al-Sadarani, K., Al-Falahi, S. and Al-Mandhari, A. (2014), "Shear strength of Omani sand treated with biopolymer", Proceeding of 7th International Congress on Environmental Geotechnics, Melbourne, Australia, November, pp. 1158-1165.
- Qureshi, M.U., Al-Qayoudhi, S., Al-Kendi, S., Al-Hamdani, A. and Al-Sadrani, K. (2015), "The effects of slaking on the durability of bio-improved sand", Int. J. Sci. Eng. Res., 6(11), 486-490.
- Ramachandran, S.K., Ramakrishnan, V. and Sookie, S.B. (2001), "Remediation of concrete using microorganisms", Mater. J., 98(1), 3-9.
- Sharma, B. and Bora, P.K. (2003), "Plastic limit, liquid limit and undrained shear strength of soilreappraisal", J. Geotech. Geoenviron. Eng., 129(8), 774-777. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:8(774)
- Shooshpasha, I. and Shirvani, R.A. (2015), "Effect of cement stabilization on geotechnical properties of sandy soils", Geomech. Eng., Int. J., 8(1), 17-31. https://doi.org/10.12989/gae.2015.8.1.017
- Sutterer, K.G., Frost, J.D. and Chameau, J.-L.A. (1996), "Polymer impregnation to assist undisturbed sampling of cohesionless soils", J. Geotech. Eng., 122(3), 209-215. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(209)
- Van de Velde, K. and Kiekens, P. (2002), "Biopolymers: overview of several properties and consequences on their applications", Polym. Test., 21(4), 433-442. https://doi.org/10.1016/S0142-9418(01)00107-6
-
Vink, E.T.H., Rabago, K.R., Glassner, D.A. and Gruber, P.R. (2003), "Applications of life cycle assessment to NatureWorks
$^{TM}$ polylactide (PLA) production", Polym. Degrad. Stabil., 80(3), 403-419. https://doi.org/10.1016/S0141-3910(02)00372-5 - Walker, P.J. (1995), "Strength, durability and shrinkage characteristics of cement stabilised soil blocks", Cement Concrete Compos., 17(4), 301-310. https://doi.org/10.1016/0958-9465(95)00019-9
- Worrell, E., Price, L., Martin, N., Hendriks, C. and Meida, L.O. (2001), "Carbon dioxide emissions from the global cement industry", Annual Rev. Energy Environ., 26(1), 303-329. https://doi.org/10.1146/annurev.energy.26.1.303
- Yevlampieva, N.P., Pavlov, G.M. and Rjumtsev, E.I. (1999), "Flow birefringence of xanthan and other polysaccharide solutions", Int. J. Biol. Macromol., 26(4), 295-301. https://doi.org/10.1016/S0141-8130(99)00096-3
피인용 문헌
- Bovine casein as a new soil strengthening binder from diary wastes vol.160, 2018, https://doi.org/10.1016/j.conbuildmat.2017.11.009
- Mechanical properties of biopolymer-stabilised soil-based construction materials vol.7, pp.4, 2017, https://doi.org/10.1680/jgele.17.00081
- Use of xanthan and guar gums in soil strengthening pp.1618-9558, 2018, https://doi.org/10.1007/s10098-018-1625-0
- Review on biological process of soil improvement in the mitigation of liquefaction in sandy soil vol.250, pp.None, 2017, https://doi.org/10.1051/matecconf/201825001017
- Vane shear strength of bio-improved sand reinforced with natural fibre vol.92, pp.None, 2017, https://doi.org/10.1051/e3sconf/20199212004
- Debonding of microbially induced carbonate precipitation-stabilized sand by shearing and erosion vol.17, pp.5, 2019, https://doi.org/10.12989/gae.2019.17.5.429
- Geotechnical engineering behavior of biopolymer-treated soft marine soil vol.17, pp.5, 2017, https://doi.org/10.12989/gae.2019.17.5.453
- Soil consistency and interparticle characteristics of xanthan gum biopolymer-containing soils with pore-fluid variation vol.56, pp.8, 2017, https://doi.org/10.1139/cgj-2018-0254
- Xanthan Gum Biopolymer as Soil-Stabilization Binder for Road Construction Using Local Soil in Sri Lanka vol.31, pp.11, 2017, https://doi.org/10.1061/(asce)mt.1943-5533.0002909
- Use of biopolymers to enhance the geotechnical properties of coal mine overburden waste vol.10, pp.1, 2017, https://doi.org/10.1680/jgele.19.00071
- Improvement in shear strength characteristics of desert sand using shredded plastic waste vol.20, pp.6, 2017, https://doi.org/10.12989/gae.2020.20.6.497
- Geo-engineering properties of expansive soil treated with xanthan gum biopolymer vol.15, pp.2, 2017, https://doi.org/10.1080/17486025.2019.1632495
- Biopolymer Stabilization/Solidification of Soils: A Rapid, Micro-Macro, Cross-Disciplinary Approach vol.54, pp.21, 2017, https://doi.org/10.1021/acs.est.0c02001
- Recyclability, durability and water vapour adsorption of unstabilised and stabilised compressed earth bricks vol.53, pp.6, 2020, https://doi.org/10.1617/s11527-020-01585-7
- The Usability of Clay/Pumice Mixtures Modified with Biopolymer as an Impermeable Liner vol.25, pp.1, 2017, https://doi.org/10.1007/s12205-020-1053-7
- Effect of Xanthan Gum Biopolymer on Fracture Properties of Clay vol.33, pp.1, 2021, https://doi.org/10.1061/(asce)mt.1943-5533.0003526
- A Review on the Importance of Microbial Biopolymers Such as Xanthan Gum to Improve Soil Properties vol.11, pp.1, 2017, https://doi.org/10.3390/app11010170
- Use of Reservoir Sediments to Improve Engineering Properties of Dune Sand in Oman vol.11, pp.4, 2017, https://doi.org/10.3390/app11041620
- Evaluation of Injection capabilities of a biopolymer-based grout material vol.25, pp.1, 2017, https://doi.org/10.12989/gae.2021.25.1.031
- Dynamic Properties of Biopolymer-Treated Loose Silty Sand Evaluated by Cyclic Triaxial Test vol.50, pp.1, 2017, https://doi.org/10.1520/jte20210141
- Biopolymers as Green Binders for Soil Improvement in Geotechnical Applications: A Review vol.11, pp.7, 2021, https://doi.org/10.3390/geosciences11070291
- Experimental investigation on the shear strength and deformation behaviour of xanthan gum and guar gum treated clayey sand vol.26, pp.2, 2017, https://doi.org/10.12989/gae.2021.26.2.101
- Reducing Soil Permeability Using Bacteria-Produced Biopolymer vol.11, pp.16, 2017, https://doi.org/10.3390/app11167278
- Preliminary study on microbially modified expansive soil of embankment vol.26, pp.3, 2017, https://doi.org/10.12989/gae.2021.26.3.301
- Interaction of biopolymer with dispersive geomaterial and its characterization: An eco-friendly approach for erosion control vol.312, pp.None, 2017, https://doi.org/10.1016/j.jclepro.2021.127778
- Experimental Study to Investigate Dune Sand Improvement by Adding Fine Waste Materials vol.902, pp.None, 2021, https://doi.org/10.4028/www.scientific.net/kem.902.153
- Experimental Study to Investigate Dune Sand Improvement by Adding Fine Waste Materials vol.902, pp.None, 2021, https://doi.org/10.4028/www.scientific.net/kem.902.153
- Site application of biopolymer-based soil treatment (BPST) for slope surface protection: in-situ wet-spraying method and strengthening effect verification vol.307, pp.None, 2021, https://doi.org/10.1016/j.conbuildmat.2021.124983