DOI QR코드

DOI QR Code

Factors affecting waterproof efficiency of grouting in single rock fracture

  • Lee, Hang Bok (Center for Deep Subsurface research, Korea Institute of Geoscience and Mineral Resources) ;
  • Oh, Tae-Min (Center for Deep Subsurface research, Korea Institute of Geoscience and Mineral Resources) ;
  • Park, Eui-Seob (Center for Deep Subsurface research, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Jong-Won (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • Kim, Hyung-Mok (Department of Energy & Mineral Resources Engineering, Sejong University)
  • 투고 : 2016.10.07
  • 심사 : 2017.02.14
  • 발행 : 2017.05.25

초록

Using a transparent fracture replica with aperture size and water-cement ratio (w/c), the factors affecting the penetration behavior of rock grouting were investigated through laboratory experiments. In addition, the waterproof efficiency was estimated by the reduction of water outflow through the fractures after the grout curing process. Penetration behavior shows that grout penetration patterns present similarly radial forms in all experimental cases; however, velocity of grout penetration showed clear differences according to the aperture sizes and water-cement ratio. It can be seen that the waterproof efficiency increased as the aperture size and w/c decreased. During grout injection or curing processes, air bubbles formed and bleeding occurred, both of which affected the waterproof ability of the grouting. These two phenomena can significantly prevent the successful performance of rock grouting in field-scale underground spaces, especially at deep depth conditions. Our research can provide a foundation for improving and optimizing the innovative techniques of rock grouting.

키워드

과제정보

연구 과제 주관 기관 : Korea Institute of Geoscience and Mineral Resources (KIGAM)

참고문헌

  1. Axelsson, M., Gustafson, G. and Fransson, A. (2009), "Stop mechanism for cementitious grouts at different water-to-cement ratios", Tunn. Undergr. Space Technol., 24(4), 390-397. https://doi.org/10.1016/j.tust.2008.11.001
  2. Butron, C., Axelsson, M. and Gustafson, G. (2009), "Silica sol for rock grouting: Laboratory testing of strength, fracture behavior and hydraulic conductivity", Tunn. Undergr. Space Technol., 24(6), 603-607. https://doi.org/10.1016/j.tust.2009.04.003
  3. Chegbeleh, L.P., Nishigaki, M., Akudago, J.A., Alim, M.A. and Komatsu, M. (2015), "Laboratory investigation of ethanol/bentonite slurry grouting into rock fractures: Preliminary results", J. Fac. Environ. Sci. Technol., 14(1), 23-28.
  4. Chun, B.S., Kim, D.Y. and Lee, Y.N. (2002), "Shear characteristic of the cement grouted sawtoothed joints", J. Korean Soc. Civil Eng., 22(5C), 469-478.
  5. Chun, B.S., Lee, Y.N. and Chung, H.I. (2006), "Effectiveness of leakage control after application of permeation grouting to earth fill dam", KSCE J. Civil Eng., 10(6), 405-414. https://doi.org/10.1007/BF02823979
  6. Draganovic, A. and Stille, H. (2011), "Filtration and penetrability of cement-based grout: Study performed with a short slot", Tunn. Undergr. Space Technol., 26(4), 548-559. https://doi.org/10.1016/j.tust.2011.02.007
  7. Eriksson, M. (2002a), "Grouting field experiment at the Aspo Hard Rock Laboratory", Tunn. Undergr. Space Technol., 17(3), 287-293. https://doi.org/10.1016/S0886-7798(02)00024-X
  8. Eriksson, M. (2002b), "Prediction of grout spread and sealing effect: A probabilistic approach", Ph. D. Dissertation; Royal Institute of Technology, Stockholm, Sweden.
  9. Funehag, J. and Fransson, A. (2006), "Sealing narrow fractures with a Newtonian fluid: model prediction for grouting verified by field study", Tunn. Undergr. Space Technol., 21(5), 492-498. https://doi.org/10.1016/j.tust.2005.08.010
  10. Gueddouda, M.L., Lamara, M., Abou-bekr, N. and Taibi, S. (2010), "Hydraulic behaviour of dune sandbentonite mixtures under confining stress", Geomech. Eng., Int. J., 2(3), 213-227. https://doi.org/10.12989/gae.2010.2.3.213
  11. Gustafson, G. and Stille, H. (1996), "Prediction of groutability from grout properties and hydrogeological data", Tunn. Undergr. Space Technol., 11(3), 325-332. https://doi.org/10.1016/0886-7798(96)00027-2
  12. Hoien, A.H. and Nilsen, B. (2014), "Rock mass grouting in the Loren tunnel: Case study with the main focus on the groutability and feasibility of drill parameter interpretation", Rock Mech. Rock Eng., 47(3), 967-983. https://doi.org/10.1007/s00603-013-0386-7
  13. ISRM (1978), "Suggested methods for the quantitative description of discontinuities in rock masses", Int. J. Rock Mech. Min. Sci. Geomech., 15(6), 319-368. https://doi.org/10.1016/0148-9062(78)91472-9
  14. Khave, G.J. (2014), "Delineating subterranean water conduits using hydraulic testing and machine performance parameters in TBM tunnel post-grouting", Int. J. Rock Mech. Min. Sci., 70, 308-317.
  15. Lisa, H., Christina, B., Asa, F., Gunnar, G. and Johan, F. (2012), "A hard rock tunnel case study: Characterization of the water-bearing fracture system for tunnel grouting", Tunn. Undergr. Space Technol., 30, 132-144. https://doi.org/10.1016/j.tust.2012.02.014
  16. Mohajerani, S., Baghbanan, A., Bagherpour, R. and Hashemolhosseini, H. (2015), "Grout penetration in fractured rock mass using a new developed explicit algorithm", Int. J. Rock Mech. Min. Sci., 80, 412-417.
  17. Mohammed, M.H., Pusch, R. and Knutsson, S. (2015), "Study of cement-grout penetration into fractures under static and oscillatory conditions", Tunn. Undergr. Space Technol., 45, 10-19. https://doi.org/10.1016/j.tust.2014.08.003
  18. Northcroft, I.W. (2006), "Innovative materials and methods for ground support, consolidation and water sealing for the mining industry", J. S. Afr. I. Min. Metall., 106(12), 835-844.
  19. Panthi, K.K. and Nilsen, B. (2010), "Uncertainty for assessing leakage through water tunnels: A case from Nepal Himalaya", Rock Mech. Rock Eng., 43(5), 629-639. https://doi.org/10.1007/s00603-009-0075-8
  20. Rafi, J.Y. and Stille, H. (2014), "Control pf rock jacking considering spread of grout and grouting pressure", Tunn. Undergr. Space Technol., 40, 1-15. https://doi.org/10.1016/j.tust.2013.09.005
  21. Rahman, M., Hakansson, U. and Wiklund, J. (2015), "In-line rheological measurements of cement grouts: Effects of water/cement ratio and hydration", Tunn. Undergr. Space Technol., 45, 34-42. https://doi.org/10.1016/j.tust.2014.09.003
  22. Saberhosseini, E., Keshavarzi, R. and Ahangari, K. (2014), "A new geomechanical approach to investigate the role of in-situ stresses and pore pressure on hydraulic fracture pressure profile in vertical and horizontal oil wells", Geomech. Eng., Int. J., 7(3), 233-246. https://doi.org/10.12989/gae.2014.7.3.233
  23. Saeidi, O., Stille, H. and Torabi, S.R. (2013), "Numerical and analytical analyses of the effects of different joint and grout properties on the rock mass groutability", Tunn. Undergr. Space Technol., 38, 11-25. https://doi.org/10.1016/j.tust.2013.05.005
  24. SsangYong cement Inc. (2016), http://www.ssangyongcement.co.kr/jsp/business/business06-08.jsp
  25. Stille, H., Gustafson, G. and Hassler, L. (2012), "Application of new theories and technology for grouting of Dams and foundations on rock", Geotech. Geol. Eng., 30(3), 603-624. https://doi.org/10.1007/s10706-012-9512-7
  26. Sui, W., Liu, J., Hu, W., Qi, J. and Zhan, K. (2015), "Experimental investigation on sealing efficiency of chemical grouting in rock fracture with flowing water", Tunn. Undergr. Space Technol., 50, 239-249. https://doi.org/10.1016/j.tust.2015.07.012
  27. Wang, J.-B., Liu, X.-R., Huang, Y.-X. and Zhang, X.-C. (2015), "Prediction model of surface subsidence for salt rock storage based on logistic function", Geomech. Eng., Int. J., 9(1), 25-37. https://doi.org/10.12989/gae.2015.9.1.025
  28. Yoon, S., Lee, S.-R., Kim, Y.-T. and Go, G.-H. (2015), "Estimation of saturated hydraulic conductivity of Korean weathered granite soils using a regression analysis", Geomech. Eng., Int. J., 9(1), 101-113.
  29. Zhang, G., Zhan, K., Gao, Y. and Wang, W. (2011), "Comparative experimental investigation of chemical grouting into a fracture with flowing and static water", Min. Sci. Technol. (China), 21(2), 201-205. https://doi.org/10.1016/j.mstc.2011.02.021
  30. Zhang, Q., Xu, Z., Wu, J. and He, P. (2017), "Grouting effects evaluation of water-rich faults and its engineering application in Qingdao Jiaozhou Bay Subsea Tunnel, China", Geomech. Eng., Int. J., 12(1), 35-52. https://doi.org/10.12989/gae.2017.12.1.035
  31. Zhu, H., Guo, J., Zhao, X., Lu, Q., Luo, B. and Feng, Y. (2014), "Hydraulic fracture initiation pressure of anisotropic shale gas reservoirs", Geomech. Eng., Int. J., 7(4), 403-430. https://doi.org/10.12989/gae.2014.7.4.403

피인용 문헌

  1. Numerical simulation of polymer grout diffusion in a single fracture vol.8, pp.10, 2018, https://doi.org/10.1063/1.5052372
  2. AE 센서 설치를 위한 커플링 재료의 블리딩 특성 vol.19, pp.4, 2017, https://doi.org/10.9711/ktaj.2017.19.4.635
  3. A Quasi-3D Numerical Model for Grout Injection in a Parallel Fracture Based on Finite Volume Method vol.2019, pp.None, 2017, https://doi.org/10.1155/2019/4139616
  4. Experimental observation and numerical simulation of cement grout penetration in discrete joints vol.18, pp.3, 2017, https://doi.org/10.12989/gae.2019.18.3.259
  5. Grouting Treatment of Water and Mud Inrush in Fully Weathered Granite Tunnel: A Case Study vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/8838769
  6. An improved approach to evaluate the compaction compensation grouting efficiency in sandy soils vol.20, pp.4, 2017, https://doi.org/10.12989/gae.2020.20.4.313
  7. Effect of Particle Size Distribution on the Grout Diffusion Pattern in Completely and Strongly Weathered Granite vol.50, pp.4, 2017, https://doi.org/10.1007/s40098-019-00386-2
  8. Analysis of permeability in rock fracture with effective stress at deep depth vol.22, pp.5, 2017, https://doi.org/10.12989/gae.2020.22.5.375
  9. Evaluation of grout penetration in single rock fracture using electrical resistivity vol.24, pp.1, 2017, https://doi.org/10.12989/gae.2021.24.1.001
  10. Effects of water saturation time on energy dissipation and burst propensity of coal specimens vol.24, pp.3, 2017, https://doi.org/10.12989/gae.2021.24.3.205
  11. Experimental Study of Polyurethane Grout Diffusion in a Water-Bearing Fracture vol.33, pp.3, 2017, https://doi.org/10.1061/(asce)mt.1943-5533.0003612
  12. Experimental study on the diffusion characteristics of polyurethane grout in a fracture vol.273, pp.None, 2017, https://doi.org/10.1016/j.conbuildmat.2020.121711