DOI QR코드

DOI QR Code

ε-polylysine biopolymer for coagulation of clay suspensions

  • Kwon, Yeong-Man (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Im, Jooyoung (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Chang, Ilhan (School of Engineering and Information Technology, University of New South Wales) ;
  • Cho, Gye-Chun (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2016.10.14
  • Accepted : 2017.02.14
  • Published : 2017.05.25

Abstract

The coagulation or flocculation of cohesive clay suspensions is one of the most widely used treatment technologies for contaminated water. Flocculated clay can transport pollutants and nutrients in ground water. Coagulants are used to accelerate these mechanisms. However, existing coagulants (e.g., polyacrylamide, polyaluminum chloride) are known to have harmful effects in the environment and on human health. As an alternative, eco-friendly coagulant, this study suggests ${\varepsilon}-polylysine$, a cationic biopolymer fermented by Streptomyces. A series of sedimentation experiments for various ${\varepsilon}-polylysine$ concentrations were performed, and the efficiency of sedimentation with ${\varepsilon}-polylysine$ was estimated by microscopic observation and light absorbance measurements. Two types of sedimentation were observed in the experiments: accumulation sedimentation (at 0.15%, 0.20%, 0.25% ${\varepsilon}-polylysine$) and flocculation sedimentation (at 0%, 0.1%, 0.5%, 1.0%, 2.0% ${\varepsilon}-polylysine$). These sedimentation types occur as a result of the concentration of counter ions. Additionally, the performance of ${\varepsilon}-polylysine$ was compared with that of a previously used environmentally friendly coagulant, chitosan. The obtained results indicate that flocculation sedimentation is appropriate for contamination removal and that ${\varepsilon}-polylysine$ functions more efficiently for clay removal than chitosan. From the experiments and analysis, this paper finds that polylysine is an alternative eco-friendly coagulant for removing chemical contaminants in groundwater.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Ministry of Land, Infrastructure, and Transport of the Korean government, KAIST, Ministry of Science, ICT and Future Planning (MISP)

References

  1. Aguilar, M., Saez, J., Llorens, M., Soler, A., Ortuno, J., Meseguer, V. and Fuentes, A. (2005), "Improvement of coagulation-flocculation process using anionic polyacrylamide as coagulant aid", Chemosphere, 58(1), 47-56. https://doi.org/10.1016/j.chemosphere.2004.09.008
  2. Amuda, O. and Alade, A. (2006), "Coagulation/flocculation process in the treatment of abattoir wastewater", Desalination, 196(1), 22-31. https://doi.org/10.1016/j.desal.2005.10.039
  3. Bartkowiak, A. and Hunkeler, D. (1999), "Alginate-oligochitosan microcapsules: A mechanistic study relating membrane and capsule properties to reaction conditions", Chem. Mater., 11(9), 2486-2492. https://doi.org/10.1021/cm9910456
  4. Chang, I. and Cho, G.-C. (2010), "A new alternative for estimation of geotechnical engineering parameters in reclaimed clays by using shear wave velocity", ASTM Geotech. Test. J., 33(3), 171-182.
  5. Chang, I. and Cho, G.-C. (2012), "Strengthening of Korean residual soil with ${\beta}$-1,3/1,6-glucan biopolymer", Constr. Build. Mater., 30, 30-35. https://doi.org/10.1016/j.conbuildmat.2011.11.030
  6. Chang, I. and Cho, G.-C. (2014), "Geotechnical behavior of a beta-1,3/1,6-glucan biopolymer-treated residual soil", Geomech. Eng., Int. J., 7(6), 633-647. https://doi.org/10.12989/gae.2014.7.6.633
  7. Chang, I., Jeon, M. and Cho, G.-C. (2015a), "Application of microbial biopolymers as an alternative construction binder for earth buildings in underdeveloped countries", Int. J. Polym. Sci., 9.
  8. Chang, I., Im, J., Prasidhi, A.K. and Cho, G.-C. (2015b), "Effects of Xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026
  9. Chang, I., Prasidhi, A.K., Im, J. and Cho, G.-C. (2015c), "Soil strengthening using thermo-gelation biopolymers", Constr. Build. Mater., 77, 430-438. https://doi.org/10.1016/j.conbuildmat.2014.12.116
  10. Chang, I., Prasidhi, A.K., Im, J., Shin, H.-D. and Cho, G.-C. (2015d), "Soil treatment using microbial biopolymers for anti-desertification purposes", Geoderma, 253-254, 39-47. https://doi.org/10.1016/j.geoderma.2015.04.006
  11. Chang, I., Im, J. and Cho, G.-C. (2016a), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj-2015-0475
  12. Chang, I., Im, J. and Cho, G.-C. (2016b), "Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering", Sustainability, 8(3), 251. https://doi.org/10.3390/su8030251
  13. Chatterjee, S., Chatterjee, S., Chatterjee, B.P., Das, A.R. and Guha, A.K. (2005), "Adsorption of a model anionic dye, eosin Y, from aqueous solution by chitosan hydrobeads", J. Colloid Interf. Sci., 288(1), 30-35. https://doi.org/10.1016/j.jcis.2005.02.055
  14. Chatterjee, T., Chatterjee, S., Lee, D.S., Lee, M.W. and Woo, S.H. (2009), "Coagulation of soil suspensions containing nonionic or anionic surfactants using chitosan, polyacrylamide, and polyaluminium chloride", Chemosphere, 75(10), 1307-1314. https://doi.org/10.1016/j.chemosphere.2009.03.012
  15. Chheda, A. and Vernekar, M. (2014), "A natural preservative ${\varepsilon}$-poly-L-lysine: Fermentative production and applications in food industry", Int. Food Res. J., 22(1), 23-30.
  16. Csempesz, F. (2000), "Enhanced flocculation of colloidal dispersions by polymer mixtures", Chem. Eng. J., 80(1), 43-49. https://doi.org/10.1016/S1383-5866(00)00076-9
  17. Dutta, P.K., Dutta, J. and Tripathi, V. (2004), "Chitin and chitosan: Chemistry, properties and applications", J. Sci. Indust. Res., 63(1), 20-31.
  18. Ghaee, A. and Zerafat, M.M. (2016), "Adsorption mechanism of copper ions on porous chitosan membranes: Equilibrium and XPS study", Membr. Water Treat., Int. J., 7(6), 555-571. https://doi.org/10.12989/mwt.2016.7.6.555
  19. Goosen, M.F.A. (1997), Applications of Chitin and Chitosan, Technomic Pub., Lancaster, PA, USA.
  20. Gupta, A., Yunus, M. and Sankararamakrishnan, N. (2013), "Chitosan-and iron-chitosan-coated sand filters: a cost-effective approach for enhanced arsenic removal", Indust. Eng. Chem. Res., 52(5), 2066-2072. https://doi.org/10.1021/ie302428z
  21. Hiraki, J., Ichikawa, T., Ninomiya, S.-i., Seki, H., Uohama, K., Seki, H., Kimura, S., Yanagimoto, Y. and Barnett, J.W. (2003), "Use of ADME studies to confirm the safety of ${\varepsilon}$-polylysine as a preservative in food", Regulat. Toxicol. Pharmacol., 37(2), 328-340. https://doi.org/10.1016/S0273-2300(03)00029-1
  22. Hirano, S., Koishibara, Y., Kitaura, S., Taneko, T., Tsuchida, H., Murae, K. and Yamamoto, T. (1991), "Chitin biodegradation in sand dunes", Biochem. Syst. Ecol., 19(5), 379-384. https://doi.org/10.1016/0305-1978(91)90054-4
  23. Imai, G. (1980), "Settling behavior of clay suspension", Soils Found., 20(2), 61-77. https://doi.org/10.3208/sandf1972.20.2_61
  24. Imai, G. (1981), "Experimental studies on sedimentation mechanism and sediment formation of clay materials", Soils Found., 21(1), 7-20. https://doi.org/10.3208/sandf1972.21.7
  25. Juang, R.S. and Shiau, R.C. (2000), "Metal removal from aqueous solutions using chitosan-enhanced membrane filtration", J. Membr. Sci., 165(2), 159-167. https://doi.org/10.1016/S0376-7388(99)00235-5
  26. Kasim, N., Mohammad, A.W. and Abdullah, S.R.S. (2016), "Performance of membrane filtration in the removal of iron and manganese from Malaysia's groundwater", Membr. Water Treat., Int. J., 7(4), 277-296. https://doi.org/10.12989/mwt.2016.7.4.277
  27. Khoiruddin, K., Hakim, A.N. and Wenten, I.G. (2014), "Advances in electrodeionization technology for ionic separation - A review", Membr. Water Treat., Int. J., 5(2), 87-108. https://doi.org/10.12989/mwt.2014.5.2.087
  28. Kim, M., Song, I., Kim, M., Kim, S., Kim, Y., Choi, Y. and Seo, M. (2015), "Effect of polyacrylamide application on water and nutrient movements in soils", J. Agri. Chem. Environ., 4(3), 76.
  29. Kobayashi, S., Kiyosada, T. and Shoda, S. (1996), "Synthesis of artificial chitin: Irreversible catalytic behavior of a glycosyl hydrolase through a transition state analogue substrate", J. Am. Chem. Soc., 118(51), 13113-13114. https://doi.org/10.1021/ja963011u
  30. Kolaian, J.H. and Low, P.F. (1960), "Thermodynamic properties of water in suspensions of montmorillonite", Proceedings of the 9th National Conference on Clays and Clay Minerals, Lafayette, IN, USA, October, pp. 71-84.
  31. Kondo, F. and Torrance, J.K. (2005), "Effects of smectite, salinity and water content on sedimentation and self-weight consolidation of thoroughly disturbed soft marine clay", Paddy Water Environ., 3(3), 155-164. https://doi.org/10.1007/s10333-005-0012-8
  32. Kurane, R., Hatamochi, K., Kakuno, T., Kiyohara, M., Hirano, M. and Taniguchi, Y. (1994), "Production of a bioflocculant by Rhodococcus erythropolis S-1 grown on alcohols", Biosci. Biotech. Biochem., 58(2), 428-429. https://doi.org/10.1271/bbb.58.428
  33. Li, W., Zhou, W., Zhang, Y., Wang, J. and Zhu, X. (2008), "Flocculation behavior and mechanism of an exopolysaccharide from the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913", Bioresource Technol., 99(15), 6893-6899. https://doi.org/10.1016/j.biortech.2008.01.050
  34. Linden, J.C., Stoner, R.J., Knutson, K.W. and Gardner-Hughes, C.A. (2000), "Organic disease control elicitors", Agro Food Industry Hi-Tech, 11(5), 32-34.
  35. Liu, X.D., Tokura, S., Haruki, M., Nishi, N. and Sakairi, N. (2002), "Surface modification of nonporous glass beads with chitosan and their adsorption property for transition metal ions", Carbohydr. Polym., 49(2), 103-108. https://doi.org/10.1016/S0144-8617(01)00308-3
  36. Ma, K. and Pierre, A.C. (1992), "Sedimentation behavior of a fine kaolinite in the presence of fresh Fe electrolyte", Clays Clay Minerals, 40(5), 586-592. https://doi.org/10.1346/CCMN.1992.0400513
  37. Marco, A., Esplugas, S. and Saum, G. (1997), "How and why combine chemical and biological processes for wastewater treatment", Water Sci. Technol., 35(4), 321-327. https://doi.org/10.1016/S0273-1223(97)00041-3
  38. Matilainen, A., Vepsalainen, M. and Sillanpaa, M. (2010), "Natural organic matter removal by coagulation during drinking water treatment: A review", Adv. Colloid Interf. Sci., 159(2), 189-197. https://doi.org/10.1016/j.cis.2010.06.007
  39. Mazia, D., Schatten, G. and Sale, W. (1975), "Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy", J. Cell Biol., 66(1), 198-200. https://doi.org/10.1083/jcb.66.1.198
  40. Michaels, A.S. and Bolger, J.C. (1962), "Settling rates and sediment volumes of flocculated kaolin suspensions", Indust. Eng. Chem. Fundament., 1(1), 24-33. https://doi.org/10.1021/i160001a004
  41. Pan, J.R., Huang, C., Chen, S. and Chung, Y.-C. (1999), "Evaluation of a modified chitosan biopolymer for coagulation of colloidal particles", Colloids Surfaces A: Physicochem. Eng. Aspects, 147(3), 359-364. https://doi.org/10.1016/S0927-7757(98)00588-3
  42. Pan, G., Zhang, M.-M., Chen, H., Zou, H. and Yan, H. (2006), "Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals", Environ. Pollut., 141(2), 195-200. https://doi.org/10.1016/j.envpol.2005.08.041
  43. Park, T.G., Jeong, J.H. and Kim, S.W. (2006), "Current status of polymeric gene delivery systems", Adv. Drug Delivery Reviews, 58(4), 467-486. https://doi.org/10.1016/j.addr.2006.03.007
  44. Petzold, G., Mende, M., Lunkwitz, K., Schwarz, S. and Buchhammer, H.-M. (2003), "Higher efficiency in the flocculation of clay suspensions by using combinations of oppositely charged polyelectrolytes", Colloids Surfaces A: Physicochem. Eng. Aspects, 218(1), 47-57. https://doi.org/10.1016/S0927-7757(02)00584-8
  45. Pierce, R.H., Henry, M.S., Higham, C.J., Blum, P., Sengco, M.R. and Anderson, D.M. (2004), "Removal of harmful algal cells (Karenia brevis) and toxins from seawater culture by clay flocculation", Harmful Algae, 3(2), 141-148. https://doi.org/10.1016/j.hal.2003.09.003
  46. Pierre, A. (1992), "The gelation of colloidal platelike particles", J. Can. Ceramic Soc., 61(2), 135-138.
  47. Rajapakse, J.P., Gallage, C., Dareeju, B., Madabhushi, G. and Fenner, R. (2015), "Strength properties of composite clay balls containing additives from industry wastes as new filter media in water treatment", Geomech. Eng., Int. J., 8(6), 859-872. https://doi.org/10.12989/gae.2015.8.6.859
  48. Rand, B. and Melton, I.E. (1977), "Particle interactions in aqueous kaolinite suspensions: I. Effect of pH and electrolyte upon the mode of particle interaction in homoionic sodium kaolinite suspensions", J. Colloid Interf. Sci., 60(2), 308-320. https://doi.org/10.1016/0021-9797(77)90290-9
  49. Roussy, J., Van Vooren, M. and Guibal, E. (2005), "Chitosan for the coagulation and flocculation of mineral colloids", J. Dispersion Sci. Technol., 25(5), 663-677. https://doi.org/10.1081/DIS-200027325
  50. Sengco, M.R., Li, A., Tugend, K., Kulis, D. and Anderson, D.M. (2001), "Removal of red-and brown-tide cells using clay flocculation. I. Laboratory culture experiments with Gymnodinium breve and Aureococcus anophagefferens", Marine Ecol. Progress Series, 210, 41-53. https://doi.org/10.3354/meps210041
  51. Seybold, C. (1994), "Polyacrylamide review: Soil conditioning and environmental fate", Commun. Soil Sci. Plant Anal., 25(11-12), 2171-2185. https://doi.org/10.1080/00103629409369180
  52. Sezer, A.D. and Akbuga, J. (1999), "Release characteristics of chitosan treated alginate beads: II. Sustained release of a low molecular drug from chitosan treated alginate beads", J. Microencapsul., 16(6), 687-696. https://doi.org/10.1080/026520499288636
  53. Shackelford, C.D. and Jefferis, S.A. (2000), "Geoenvironmental engineering for in situ remediation", Proceedings of International Society of Rock Mechanics International Symposium, Melbourne, Australia, November, 65 p.
  54. Shin, Y., Yoo, D.I. and Min, K. (1999), "Antimicrobial finishing of polypropylene nonwoven fabric by treatment with chitosan oligomer", J. Appl. Polym. Sci., 74(12), 2911-2916. https://doi.org/10.1002/1097-4628(19991213)74:12<2911::AID-APP16>3.0.CO;2-2
  55. Sidik, W.S., Canakci, H., Kilic, I.H. and Celik, F. (2014), "Applicability of biocementation for organic soil and its effect on permeability", Geomech. Eng., Int. J., 7(6), 649-663. https://doi.org/10.12989/gae.2014.7.6.649
  56. Suzuki, T., Mizushima, Y., Umeda, T. and Ohashi, R. (1999), "Further biocompatibility testing of silicachitosan complex membrane in the production of tissue plasminogen activator by epithelial and fibroblast cells", J. Biosci. Bioeng., 88(2), 194-199. https://doi.org/10.1016/S1389-1723(99)80201-1
  57. Tambo, N. and Watanabe, Y. (1979), "Physical characteristics of flocs-I. The floc density function and aluminium floc", Water Res., 13(5), 409-419. https://doi.org/10.1016/0043-1354(79)90033-2
  58. Tatsi, A., Zouboulis, A., Matis, K. and Samaras, P. (2003), "Coagulation-flocculation pretreatment of sanitary landfill leachates", Chemosphere, 53(7), 737-744. https://doi.org/10.1016/S0045-6535(03)00513-7
  59. Theodoro, J.D.P., Lenz, G.F., Zara, R.F. and Bergamasco, R. (2013), "Coagulants and natural polymers: perspectives for the treatment of water", Plastic Polym. Technol., 2(3), 55-62.
  60. Vidali, M. (2001), "Bioremediation. an overview", Pure Appl. Chem., 73(7), 1163-1172. https://doi.org/10.1351/pac200173071163
  61. WBCSD (2015), The indian Water Tool version 2 (IWT 2.1); Available at: http://www.indiawatertool.in/(Accessed on October 12, 2016).
  62. Yukselen, M.A. and Gregory, J. (2004), "The reversibility of floc breakage", Int. J. Mineral Process., 73(2-4), 251-259. https://doi.org/10.1016/S0301-7516(03)00077-2
  63. Zou, H., Pan, G., Chen, H. and Yuan, X. (2006), "Removal of cyanobacterial blooms in Taihu Lake using local soils II. Effective removal of Microcystis aeruginosa using local soils and sediments modified by chitosan", Environ. Pollut., 141(2), 201-205. https://doi.org/10.1016/j.envpol.2005.08.042

Cited by

  1. Bovine casein as a new soil strengthening binder from diary wastes vol.160, 2018, https://doi.org/10.1016/j.conbuildmat.2017.11.009
  2. Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay pp.1861-1133, 2018, https://doi.org/10.1007/s11440-018-0641-x
  3. Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands vol.17, pp.5, 2019, https://doi.org/10.12989/gae.2019.17.5.445
  4. Geotechnical engineering behavior of biopolymer-treated soft marine soil vol.17, pp.5, 2017, https://doi.org/10.12989/gae.2019.17.5.453
  5. Progress, challenges, and opportunities in enhancing NOM flocculation using chemically modified chitosan: a review towards future development vol.6, pp.1, 2017, https://doi.org/10.1039/c9ew00596j
  6. Recent Advances in Epsilon-Poly-L-Lysine and L-Lysine-Based Dendrimer Synthesis, Modification, and Biomedical Applications vol.9, pp.None, 2017, https://doi.org/10.3389/fchem.2021.659304
  7. Biopolymers as Green Binders for Soil Improvement in Geotechnical Applications: A Review vol.11, pp.7, 2021, https://doi.org/10.3390/geosciences11070291
  8. Effect of Pore-Fluid Chemistry on the Undrained Shear Strength of Xanthan Gum Biopolymer-Treated Clays vol.147, pp.11, 2017, https://doi.org/10.1061/(asce)gt.1943-5606.0002652