DOI QR코드

DOI QR Code

Analysis of Crystallinity and Electrical Characteristics of Oxide Semiconductor of ZnO in Accordance with Annealing Methods

ZnO의 열처리방법에 따른 전기적인 특성의 변화와 결정성

  • Oh, Teresa (Department of Semiconductor Engineering, Cheongju University)
  • Received : 2016.09.04
  • Accepted : 2017.03.21
  • Published : 2017.05.27

Abstract

ZnO film was prepared on a p-type Si wafer and then annealed at various temperatures in air and vacuum conditions to research the electrical properties and bonding structures during the annealing processes. ZnO film annealed in atmosphere formed a crystal structure owing to the suppression of oxygen vacancies: however, ZnO annealed in vacuum had an amorphous structure after annealing because of the increment of the content of oxygen vacancies. Schottky contact was observed for the ZnO annealed in an air. O 1s spectra with amorphous structure was found to have a value of 529 eV; that with a crystal structure was found to have a value of 531.5 eV. However, it was observed in these results that the correlation between the electronic characteristics and the bonding structures was weak.

Keywords

References

  1. G. Kenugapal and S.-J. Kim, Current Appl. Phys., 11, S381 (2011). https://doi.org/10.1016/j.cap.2011.03.030
  2. S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa and M. Kawasaki1, Appl. Phys. Lett., 93, 123309 (2008). https://doi.org/10.1063/1.2989125
  3. S. B. Sim, M. C. Lee and D. S. Bae, Korean J. Mater. Res., 25, 683 (2015). https://doi.org/10.3740/MRSK.2015.25.12.683
  4. S. W. Tsao, T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Chen, C. T. Tsai, Y. J. Kuo, Y. C. Chen and W. C. Wub, Solid-State Electronics, 54, 1497 (2010). https://doi.org/10.1016/j.sse.2010.08.001
  5. D. W. Jeong, J. J. Kim and J. O Lee, J. Korean Phys. Soc., 59, 3133 (2011). https://doi.org/10.3938/jkps.59.3133
  6. W.-T. Chen, S.-Y. Lo, S.-C. Kao, H.-W. Zan, C.-C. Tsai, J.-H. Lin, C.-H. Fang, and C.-C. Lee, IEEE Electron. Dev. Lett., 32, 1552 (2011). https://doi.org/10.1109/LED.2011.2165694
  7. J. S. Lee, Y. J. Kwack and W. S. Choi, J. Korean Phys. Soc., 59, 3305 (2011).
  8. D. Cha, S. Lee, J. Jung and I. An, J. Korean Phys. Soc., 56, 846 (2010). https://doi.org/10.3938/jkps.56.846
  9. J. Maserjian, J. Vac. Sci. Technol., 11, 996 (1974). https://doi.org/10.1116/1.1318719
  10. K. Nomura, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, Appl. Phys. Lett., 93, 192107 (2008). https://doi.org/10.1063/1.3020714
  11. O. Mitrofanov and M. Mantra, J. Appl. Phys., 95, 6414 (2004). https://doi.org/10.1063/1.1719264
  12. M. E. Lopes, H. L. Gomes, M. C. R. Medeiros, P. Barquinha, L. Pereira, E. Fortunato, R. Martins and I. Ferreira, Appl. Phys. Lett., 95, 063502 (2009). https://doi.org/10.1063/1.3187532
  13. T. Oh and C. K. Choi, J. Korean Phys. Soc., 56, 1150 (2010). https://doi.org/10.3938/jkps.56.1150
  14. Y. Y. Peng, T. E. Hsieh and C. H. Hsu, Nanotechnology, 17, 174 (2006). https://doi.org/10.1088/0957-4484/17/1/028
  15. T. Oh, Korean J. Mater. Res., 24, 135 (2014). https://doi.org/10.3740/MRSK.2014.24.3.135
  16. J. Heo, H. J. Kim, J. H. Han and J. W. Shon. Thin Solid Films, 515, 5035 (2007). https://doi.org/10.1016/j.tsf.2006.10.095
  17. T. Oh, Korean J. Mater. Res., 25, 1149 (2015).
  18. B. J. Choi, Korean J. Mater. Res., 25, 429 (2015). https://doi.org/10.3740/MRSK.2015.25.9.429
  19. J. Maserjian and N. Zamani, Appl. Phys. Lett., 53, 559 (1982).