DOI QR코드

DOI QR Code

A Study on Numerical Analysis for Internal PEMFC Cooling of Power Pack for UPS

UPS 파워 팩 내부 연료전지의 냉각특성에 대한 수치 해석

  • Song, Jun-Seok (Department of Mechanical Engineering, Chonnam National University) ;
  • Kim, Byeong-Heon (Division of Special equipment, Chunnam Techno University)
  • 송준석 (전남대학교 기계공학과) ;
  • 김병헌 (전남과학대학교 특수장비과)
  • Received : 2017.01.02
  • Accepted : 2017.04.07
  • Published : 2017.04.30

Abstract

Heat management is one of the most critical issues in Polymer Electrolyte Membrane Fuel Cells (PEMFCs) installed inside the fuel cell power pack of a fuel cell battery hybrid UPS. If the heat generated by the chemical reaction in the fuel cell is not rapidly removed, the durability and performance of the fuel cell may be affected, which may shorten its lifetime. Therefore, the objective of this study is to select and propose a proper cooling method for the fuel cells used in the fuel cell power pack of a UPS. In order to find the most appropriate cooling method, the various design factors affecting the cooling performance were studied. The numerical analysis was performed by a commercial program, i.e., COMSOL Multiphysics. Firstly, the surface temperature of the 1 kW class fuel cell stack with the cooling fans placed at the top was compared with the one with the cooling fans placed at the bottom. Various rotation speeds of the cooling fan, viz. 2,500, 3,000, 3,500, and 4,000 RPM, were tested to determine the proper cooling fan speed. In addition, the influence of the inhaled air flow rate was investigated by changing the porous area of the grille, which is the entrance of the air flowing from the outside to the inside of the power pack. As a result, it was found that for the operating conditions of the 1 kW class PEMFC to be acceptable, the cooling fan was required to have a minimum rotating speed of 3500 RPM to maintain the fuel cell surface temperature within an acceptable range. The results of this study can be effectively applied to the development of thermal management technology for the fuel cells inside the fuel cell power pack of a UPS.

연료전지 배터리 하이브리드 UPS용 연료전지 파워 팩 내부에 설치한 연료전지의 화학반응에 의해 생성되는 열을 제거하는데 어려움이 있다. 열을 제거하지 못할 경우 연료전지의 내구성과 성능에 영향을 끼쳐 수명 단축의 원인이 된다. UPS용 연료전지 파워 팩 제작을 위하여 연료전지의 적절한 냉각 방법을 선정하고 제시하는 것이 본 연구의 목표이다. 냉각방법 선정을 위해 냉각 성능에 영향을 주는 각각의 설계 인자를 변화시키면서 연구를 수행하였다. 전산해석은 상용프로그램인 COMSOL Multiphysics로 수행하였다. 먼저 연료전지 스택의 냉각 팬의 위치를 상단과 하단에 배치했을 때 1 kW급 연료전지 스택 표면온도를 비교하였으며, 각각의 위치에 따른 냉각 팬의 회전속도를 2,500, 3,000, 3,500, 4,000 RPM으로 변경하여 적절한 냉각 팬의 속도를 결정하였다. 또한 파워 팩 외부에서 내부로 들어오는 공기의 입구인 그릴의 타공면적을 달리하여 내부로 들어오는 공기의 유량이 냉각에 미치는 영향을 비교하였다. 본 연구는 UPS용 연료전지 파워 팩 내부 연료전지의 열관리 기술개발에 효과적으로 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. J. Ke, R. Xinbo, Y. Mengxiong, X. Min, "A Hybrid Fuel Cell Power System", IEEE Transactions, Vol. 56, pp. 1212-1222, 2009. DOI: https://doi.org/10.1109/TIE.2008.2008336
  2. F. Barbir, "PEM Fuel Cells: Theory and Practice", ELSEVIER, Burlington, 2005.
  3. W. A. N. Mohamed, R. Atan, "Computational Analysis On Thermal Performance And Coolant Flow Of An Air-Cooled Polymer Electrolyte Membrane Fuel Cell", Journal of Mechanical Engineering, Vol. 7, No. 2, pp. 15-36, 2010.
  4. W. A. N. Mohamed, R. Atan, A. Ismail, "Heat Transfer Simulation of a Single Channel Air-Cooled Polymer Electrolyte Membrane Fuel Cell Stack with Extended Cooling Surface", International Conference on Science and Social Research, pp. 91-96, 2010. DOI: https://doi.org/10.1109/cssr.2010.5773920
  5. J. Scholta, M. Messerschmidt, L. Jorissen, C. Hartnig, "Externally cooled high temperature polymer electrolyte membrane fuel cell stack", Journal of Power Sources, Vol. 190, No. 1, pp. 83-85, 2009. DOI: https://doi.org/10.1016/j.jpowsour.2008.10.124
  6. K. P. Adzakpa, J. Ramousse, Y. Dube, H. Akremi, K. Agbossou, M. Dostie, A. Poulin, M. Fournier, "Transient air cooling thermal modeling of a PEM fuel cell", Journal of Power Source, Vol. 179, No. 1, pp. 164-176, 2008. DOI: https://doi.org/10.1016/j.jpowsour.2007.12.102
  7. C. Spitta, J. Mathiak, M. Kokupil, A. Heinzel, Coupling of a Small Scale hydrogen Generator and a PEM Fuel Cell, WILEY-VCH Verlag, Weinheim, 2007.
  8. S. T. Hwang, S. H. Cheon, J. S. Song, Y. H. Yun, B. H. Kim, X. Zhang, D. U. Kim, D. Hyun, B. S. Oh, "A Study to Improve PEMFC Performance by Using Electro Polishing and CrN Coating on Metal Bipolar Plate", Transaction of KSAE, Vol. 22, No. 4, pp. 65-71, 2014. DOI: https://doi.org/10.7467/ksae.2014.22.4.065
  9. A. Faghri, Z. Guo, "Integration of Heat Pipe into Fuel Cell Technology", Heat Transfer Engineering, Vol. 29, No. 3, pp. 232-238, 2008. DOI: DOI: https://doi.org/10.1080/01457630701755902
  10. www.nuritech21.com
  11. R. D. Blevins, Applied Fluid Dynamics Handbook, Van Nostrand einhold, 1984.
  12. S. Shahsavari, A. Desouza, M. Bahrami, E. Kjeang, "Thermal analysis of air-cooled PEM fuel cells", International Journal of Hydrogen Energy, Vol. 37, pp. 18261-18271, 2012. DOI: https://doi.org/10.1016/j.ijhydene.2012.09.075
  13. M. Matian, A. Marquis, N. Brandon, "Model based design and test of cooling plates for an air-cooled polymer electrolyte fuel cell stack", International Journal of Hydrogen Energy, Vol 36, pp. 6051-6066, 2011. DOI: https://doi.org/10.1016/j.ijhydene.2011.01.026