참고문헌
- Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 333(6046), 1096-1097. https://doi.org/10.1126/science.1204153
- Eilam, B., & Poyas, Y. (2008). Learning with multiple representations: Extending multimedia learning beyond the lab. Learning and instruction, 18(4), 368-378. https://doi.org/10.1016/j.learninstruc.2007.07.003
- Faraday, M. (1852). On the physical character of the lines of magnetic force. Reprinted in M. Faraday (Ed.) (1855), Experimental researches in electricity (Vol. 3, pp. 407-437).
- Gilbert, J. K. (Ed.). (2005). Visualization in science education. Dordrecht, The Netherlands: Springer.
- Gilbert, J. K., & Treagust, D. (Eds.). (2009). Multiple representations in chemical education. New York, NY: Springer Science & Business Media.
- Griffiths, D. J. (2012). Introduction to electrodynamics (4th ed.). London, UK: Pearson Education.
- Jho, H. (2013). Analysis of undergraduate physics textbooks related to the concept of an electric field. New Physics: Sae Mulli, 63(12), 1346-1352. https://doi.org/10.3938/NPSM.63.1346
- Jho, H. (2015). Analysis of electricity and magnetism presented in middle-school textbooks from the perspective of the history of science. New Physics: Sae Mulli, 65(10), 982-993. https://doi.org/10.3938/NPSM.65.982
- Jo, K. (2016). University students’ understanding of the curl of the magnetic field in upper-level electromagnetism and development of an explanation model. New Physics: Sae Mulli, 66(5), 560-570. https://doi.org/10.3938/NPSM.66.560
- Jo, K. H., Song J. W., & Suh, J. A. (2010) Development of an analytical framework for the exemplification type of a science textbook. New Physics: Sae Mulli, 60(3), 283-292. https://doi.org/10.3938/NPSM.60.283
- Jo, K., Jho, H., & Yoon, H. G. (2015). Analysis of visual representations related to electromagnetism in primary and secondary science textbooks. New Physics: Sae Mulli, 65(4), 343-357. https://doi.org/10.3938/NPSM.65.343
- Jo, O., & Kim, Y. (2008). Investigation of science high-school students’ perceptions and suggestion for a strategy to explain the interaction between an electric current and an external magnetic field. New Physics: Sae Mulli, 57(6), 373-380.
- Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of chemical education, 70(9), 701. https://doi.org/10.1021/ed070p701
- Kang, H. S., Sung, D. Y., & Noh, T. H. (2007). The influences of small group discussion and students' visual learning style on learning with multiple representations using drawing and writing: Focused on chemical concepts. Journal of The Korean Association For Science Education, 27(1), 28-36.
- Kohl, P. B., & Finkelstein, N. D. (2005). Student representational competence and selfassessment when solving physics problems. Physical Review Special Topics-Physics Education Research, 1(1), 010104. https://doi.org/10.1103/PhysRevSTPER.1.010104
- Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of research in science teaching, 34(9), 949-968. https://doi.org/10.1002/(SICI)1098-2736(199711)34:9<949::AID-TEA7>3.0.CO;2-U
- Kozma, R., & Russell, J. (2005). Students becoming chemists: Developing representational competence. In J. K. John (Ed.), Visualization in science education (pp. 121-145). Dordrecht, The Netherlands: Springer Netherlands.
- Lemke, J. L. (1998). Multiplying meaning: Visual and verbal semiotics in scientific text. In J. R. Martin & R. Veel (Eds.), Reading Science (pp. 87-113). London, UK: Routledge.
- Ministry of Education, Science and Technology [MEST]. (2011). The 2009 revised science curriculum (No. 2011-361). Seoul: Author.
- Nitz, S., Ainsworth, S. E., Nerdel, C., & Prechtl, H. (2014). Do student perceptions of teaching predict the development of representational competence and biological knowledge?. Learning and instruction, 31, 13-22. https://doi.org/10.1016/j.learninstruc.2013.12.003
- Park, H., Jung, D., Shin, H, Kim, J. et al. (2012). Middle school science 3. Seoul: Kyohaksa.
- Park, S. W., & Hyun, D. G. (2014). Theoretical approach to problems related to magnetic interactions of electric currents in elementary-school science classes. New physics: Sae Mulli, 64(4), 405-416. https://doi.org/10.3938/NPSM.64.405
- Rosengrant, D., Etkina, E., & Van Heuvelen, A. (2007). An overview of recent research on multiple representations. In L. McCullough, L. Hsu, & P. Heron (Eds.), AIP Conference proceedings (Vol. 883, No. 1, pp. 149-152). AIP.
- Roth, W., Lilian, P., & Han, Y. H. (2005). Critical graphicacy: Understanding visual representation practices in school science. New York, NY: Springer Science+Business Media B.V.
- Schnotz, W. (2002). Commentary: Towards an integrated view of learning from text and visual displays. Educational psychology review, 14(1), 101-120. https://doi.org/10.1023/A:1013136727916
- Song, J., Kim, I., Kim, Y., Kwon, S., Oh, W., & Park, J. (2004). Students' misconceptions on physics. Seoul: Bookshill.
- The Korean Physical Society. (KPS) (2016). 2016 Korean-English translation for physics words. Retrieved from http://conf.kps.or.kr/Contents/page.asp?pageCode=0402
- Treagust, D. F., & Chittleborough, G. (2001). Chemistry: A matter of understanding representations. In Emerald Group Publishing Limited, Subject-specific instructional methods and activities (Vol. 8, pp. 239-267). Oxford, UK: Elsevier. Emerald Group Publishing Limited.
- Tytler, R., Prain, V., Hubber, P., & Waldrip, B. (Eds.). (2013). Constructing representations to learn in science. New York, NY: Springer Science & Business Media.
- Yoon, H. G., Jo, K., & Jho, H. (2016). Middle school students’ interpretation, construction, and application of visual representations for electrostatic induction. New Physics: Sae Mulli, 66(5), 580-589. https://doi.org/10.3938/NPSM.66.580
- Young, H. D. (1992). University physics (8th ed). Addison-Wesley Publishing Company.
피인용 문헌
- 전자기 관련 실험 활동에서 초등 교사가 사용한 표상 패턴과 의미 형성 과정 분석 vol.39, pp.2, 2017, https://doi.org/10.15267/keses.2020.39.2.204