DOI QR코드

DOI QR Code

A comparative study of granular activated carbon and sand as water filtration media with estimation of model parameters

  • 투고 : 2017.01.20
  • 심사 : 2017.04.25
  • 발행 : 2017.03.25

초록

The use of Granular Activated Carbon (GAC) and naturally occurring silica (Sand) as filtration media in water and waste water treatment systems is very common. While GAC offers the additional functionality of being an "adsorptive" filter for dissolved organics it is also more expensive. In this paper we present an experimental evaluation of the performance of a bed of GAC for colloid removal and compare the same with that from an equivalent bed of Sand. The experiments are performed in an "intermittent" manner over extended time, to "simulate" performance over the life of the filter bed. The experiments were continued till a significant drop in water flow rate through the bed was observed. A novel "deposition" and "detachment" rate based transient mathematical model is developed. It is observed that the data from the experiments can be explained by the above model, for different aqueous phase electrolyte concentrations. The model "parameters", namely the "deposition" and "detachment" rates are evaluated for the 2 filter media studied. The model suggests that the significantly better performance of GAC in colloid filtration is probably due to significantly lower detachment of colloids from the same. While the "deposition" rates are higher for GAC, the "detachment" rates are significantly lower, which makes GAC more effective than sand for colloid removal by over an order of magnitude.

키워드

참고문헌

  1. Ahmadi, H., Namin, M.M. and Kilanehei, F. (2016), "Development a numerical model of flow and contaminant transport in layered soils", Adv. Environ. Res., 5(4), 263-282. https://doi.org/10.12989/aer.2016.5.4.263
  2. Bai, R. and Tien, C. (1997), "Particle detachment in deep bed filtration", J. Coll. Interf. Sci., 186(2), 307-317. https://doi.org/10.1006/jcis.1996.4663
  3. Bergendahl, J. and Grasso, D. (2000), "Prediction of Colloid detachment in a model porous media: Hydrodynamics", Chem. Eng. Sci., 55(9), 1523-1532. https://doi.org/10.1016/S0009-2509(99)00422-4
  4. Bradford, S.A. and Bettahar, M. (2006), "Concentration dependent transport of colloids in saturated-porousmedia", J. Contam. Hydrol., 82(1), 99-117. https://doi.org/10.1016/j.jconhyd.2005.09.006
  5. Bradford, S.A., Simunek, J., Bettahar, M., Tadassa, Y.F., Th Van Genuchten, M. and Yates, S.R. (2005), "Straining of colloids at textural interfaces", Wat. Res. Res., 41(10), W10404. https://doi.org/10.1029/2004WR003675
  6. Bradford, S.A., Simunek, J., Bettahar, M., Th Van Genuchten, M. and Yates, S.R. (2003), "Modeling colloid attachment, straining and exclusion in saturated-porous-media", Environ. Sci. Technol., 37(10), 2242-2250. https://doi.org/10.1021/es025899u
  7. Bradford, S.A., Torkzaban, S. and Walker, S.L. (2007), "Coupling of physical and chemical mechanisms of colloid straining in saturated-porous-media", Wat. Res., 41(13), 3012-3024. https://doi.org/10.1016/j.watres.2007.03.030
  8. Brown, D.G. and Abramson, A. (2006), "Collision efficiency distribution of a bacterial suspension flowing through porous media and implications for field scale transport", Wat. Res., 40(8), 1591-1598. https://doi.org/10.1016/j.watres.2006.02.016
  9. Chatterjee, J. and Gupta, S.K. (2014), Particulate Filter, EP 2161067 B1.
  10. Chatterjee, J. and Gupta, S.K. (2009), "An agglomeration-based model for colloid filtration", Environ. Sci. Technol., 43(10), 3694-3699. https://doi.org/10.1021/es8029973
  11. Chatterjee, J., Pratap, S. and Shajahan, A. (2011), "Dual-deposition rates in colloid filtration caused by coupled heterogeneities in a colloidal population", J. Coll. Interf. Sci., 356(1), 362-368. https://doi.org/10.1016/j.jcis.2010.12.029
  12. Chatterjee, J., Shajahan, A. and Gupta, S.K. (2010), "Estimation of colloidal deposition from heterogeneous populations", Wat. Res., 44(11), 3365-3374. https://doi.org/10.1016/j.watres.2010.03.025
  13. Darby, J.L. and Lawler, D.F. (1992), "Filtration of heterogeneous suspensions: Modeling of particle removal and head loss", Wat. Res., 26(6), 711-726. https://doi.org/10.1016/0043-1354(92)90002-L
  14. Foppen, W.J., Herwerden, M. and Schijven, J. (2007), "Transport of escherichia coli in saturated-porousmedia: Dual mode deposition and intra-population heterogeneity", Wat. Res., 41(8), 1743-1753. https://doi.org/10.1016/j.watres.2006.12.041
  15. Gitis, V., Rubenstein, I., Livshits, M. and Ziskind, G. (2010), "Deep-bed filtration model with multistage deposition kinetics", Chem. Eng. J., 163(1), 78-85. https://doi.org/10.1016/j.cej.2010.07.044
  16. Grolimund, D., Elimelech, M. and Borkovec, M. (2001), "Aggregation and deposition of mobile colloidal particles in natural porous media", Coll. Surf. A., 191(1), 179-188. https://doi.org/10.1016/S0927-7757(01)00773-7
  17. Hamid, S. and Lee, W. (2016), "Reduction of nitrate in groundwater by hematite supported bimetallic catalyst", Adv. Environ. Res., 5(1), 51-59. https://doi.org/10.12989/aer.2016.5.1.051
  18. Kalpakli, Y. (2015), "Removal of Cu (II) from aqueous solutions using magnetite: A kinetic, equilibrium study", Adv. Environ. Res., 4(2), 119-133. https://doi.org/10.12989/aer.2015.4.2.119
  19. Li, X., Scheibe, T.D. and Johnson, W.P. (2004), "Apparent decreases in colloid deposition-rate coefficients with distance of transport under unfavorable deposition conditions: A general phenomena", Environ. Sci. Technol., 38(2), 5616-5625. https://doi.org/10.1021/es049154v
  20. Mackie, R.I. and Zhao, Q. (1999), "A framework for modeling removal in the filtration of poly-disperse suspensions", Wat. Res., 33(3), 794-806. https://doi.org/10.1016/S0043-1354(98)00267-X
  21. Mohammed, K.R., Ahsan, A., Imteaz, M., El-Sergany, M.M., Nik Daud, N.N., Mohamed, T.A. and Ibrahim, B.A. (2015), "Performance of GACC and GACP to treat institutional wastewater: A sustainable technique", Membr. Wat. Treat., 6(4), 339-349. https://doi.org/10.12989/mwt.2015.6.4.339
  22. Rajagopalan, R. and Tien, C. (1977), "Single collector analysis of collection mechanisms in water filtration", Can. J. Chem. Eng., 55(3), 246. https://doi.org/10.1002/cjce.5450550303
  23. Rouabeh, I. and Amrani, M. (2012), "Equilibrium modeling for adsorption of $NO_{3}^{-}$ from aqueous solution on activated carbon produced from pomegranate peel", Adv. Environ. Res., 1(2), 143-151. https://doi.org/10.12989/aer.2012.1.2.143
  24. Satavalekar, R.S. and Sawant, V.A. (2014), "Numerical modelling of contaminant transport using FEM and mesh-free method", Adv. Environ. Res., 3(2), 117-129. https://doi.org/10.12989/aer.2014.3.2.117
  25. Tien, C. and Ramarao, B.V. (2007), Granular Filtration of Aerosols and Hydrosols, Elsevier, New York, U.S.A.
  26. Tobiason, J.E. and Vigneswaran, B. (1994), "Evaluation of a modified model for deep bed filtration", Wat. Res., 28(2), 335-342. https://doi.org/10.1016/0043-1354(94)90271-2
  27. Tong, M. and Johnson, W.P. (2007), "Colloid population heterogeneity drives hyper exponential deviation from classic filtration theory", Environ. Sci. Technol., 41(2), 493-499. https://doi.org/10.1021/es061202j
  28. Tong, M., Camesano, T.A. and Johnson, W.P. (2005), "Spatial variation in deposition-rate coefficients of an adhesion-deficient bacterial strain in quartz sand", Environ. Sci. Technol., 39(10), 3679-3687. https://doi.org/10.1021/es048850s
  29. Tufenkji, N. (2007), "Modeling microbial transport in porous media: Traditional approaches and recent developments", Adv. Wat. Res., 30(6), 1455-1469. https://doi.org/10.1016/j.advwatres.2006.05.014
  30. Tufenkji, N. and Elimelech, M. (2004), "Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions", Langmuir, 20(25), 10818-10828. https://doi.org/10.1021/la0486638
  31. Tufenkji, N. and Elimelech, M. (2005a), "Breakdown of colloid filtration theory: Role of the secondary energy minimum and surface charge heterogeneities", Langmuir, 21(3), 841-852. https://doi.org/10.1021/la048102g
  32. Tufenkji, N. and Elimelech, M. (2005b), "Spatial distribution of cryptosporidium oocysts in porous media: Evidence of dual mode deposition", Environ. Sci. Technol., 39(10), 3620-3629. https://doi.org/10.1021/es048289y
  33. Tufenkji, N., Redman, J.A. and Elimelech, M. (2003), "Interpreting deposition patterns of microbial particles in laboratory scale experiments", Environ. Sci. Technol., 37(3), 616-623. https://doi.org/10.1021/es025871i
  34. Vigneswaran, S. and Tulachan, R.K. (1998), "Mathematical modeling of transient behavior of deep bed filtration", Wat. Res., 22(9), 1093-1100. https://doi.org/10.1016/0043-1354(88)90003-6

피인용 문헌

  1. A column study of effect of filter media on the performance of sand filter vol.11, pp.4, 2017, https://doi.org/10.12989/mwt.2020.11.4.247