References
- E.P. Doolan, J.J.H. Miller and W.H.A. Schilders, Uniform numerical methods for problems with initial and boundary layers, Boole Press, Dublin, Ireland, 1980.
- P.A. Farrell, A.F. Hegarty, J.J.H. Miller, E. O'Riordan and G.I. Shishkin, Robust computational techniques for boundary layers, Chapman and Hall/CRC, Raton, Florida, USA, Boca, 2000.
- E.C. Gartland, Graded mesh difference schemes for singularly perturbed two-point boundary value problems, Mathematics of Computation 51 (1988).
- F.A. Howes, Differential inequalities of higher order and the asymptotic solution of the nonlinear boundary value problems, SIAM, Journal of Math. Anal. 13 (1982), 61-80. https://doi.org/10.1137/0513005
- F.A. Howes, The asymptotic solution of a class of third order boundary value problem arising in the theory of thin film flow, SIAM, J.Appli.Math. 43 (1983), 993-1004. https://doi.org/10.1137/0143065
- J. Jayakumar and N. Ramanujam, A numerical method for singular perturbation problems arising in chemical reactor theory, Comp.Math.Applic. 27 (1994), 83-99.
- Michal Feckan, Singularly perturbed higher order boundary value problems, Journal of differential equations 111 (1994), 79-102. https://doi.org/10.1006/jdeq.1994.1076
- Michal Feckan, Parametrized singularly perturbed boundary value problems, Journal of Mathematical Analysis and Applications 188 (1994), 426-435. https://doi.org/10.1006/jmaa.1994.1436
- J.J.H. Miller, E. O'Riordan and G.I. Shishkin, Fitted numerical methods for singularly perturbed problems. Error estimates in the maximum norm for linear problems in one and two dimensions, World Scientific, Singapore, 1996.
- S. Natesan and N. Ramanujam, A shooting method for singularly perturbed onedimensional reaction-diffusion neumann problems, Intern.J.Computer Math. 72 (1997), 383-393.
- S. Natesan, J. Jayakumar and J. Vigo-Aguiar, Parameter uniform numerical method for singularly perturbed turning point problems exhibiting boundary Layers, Journal of Computational and Applied Mathematics 158 (2003), 121-134. https://doi.org/10.1016/S0377-0427(03)00476-X
- S. Natesan, Booster method for singularly perturbed Robin problems-II, Intern.J.Computer Math. 78 (1997), 141-152.
- S. Natesan, J. Vigo-Aguiar and N. Ramanujam, A numerical algorithm for singular perturbation problems exhibiting weak boundary layers, Journal of Computers and Mathematics with Applications 45 (2003), 469-479. https://doi.org/10.1016/S0898-1221(03)80031-7
- A.H. Nayfeh, Introduction to perturbation methods, John Wiley and Sons, New York, 1981.
- A.H. Nayfeh, Problems in perturbation methods, Wiley Interscience, New York, 1985.
- S. Natesan and N. Ramanujam, A Shooting method for singularly perturbation problems arising in chemical reactor theory, Intern.J.Computer Math. 70 (1997), 251-262.
- K. Niederdrenk and H. Yserentant, The uniform stability of singularly perturbed discrete and continuous boundary value problems, Numer.Math. 41 (1983), 223-253. https://doi.org/10.1007/BF01390214
- R.E. O'Malley, Introduction to singular perturbations, Academic Press, New York, 1974.
- R.E. O'Malley, Singular perturbation methods for ordinary differntial equation, Springerverlag, New York, 1991.
- N. Ramanujam and U. N. Srivastava, Singularly perturbed initial value problems for nonlinear differential systems, Indian J. Pure and Appl.Math. 11 (1980), 98-113.
- S.M. Roberts, A boundary value technique for singular perturbation problems, J.Math.Anal.Appl. 87 (1982), 489-508. https://doi.org/10.1016/0022-247X(82)90139-1
- S.M. Roberts, Further examples of the boundary value technique in singular perturbation problems, Journal of Mathematical Analysis and Applications 133 (1988), 411-436. https://doi.org/10.1016/0022-247X(88)90412-X
- H.G. Roos, M. Stynes, A uniformly convergent discretization method for a fourth order singular perturbation problem, Bonner Math.schriften 228 (1991), 30-40.
- H.G. Roos, M. Stynes, and L. Tobiska, Numerical methods for singularly perturbed differential equations, Convection-diffusion and flow problems, Springer-Verlag, 1996.
- B. Sember, Locking in finite element approximation of long thin extensible beam, IMA, J.Numerical.Anal. 14 (1994), 97-109. https://doi.org/10.1093/imanum/14.1.97
- V. Shanthi and N. Ramanujam, Computational methods for reaction-diffusion problems for fourth order ordinary differentional equations with a small parameter at the highest derivative, Applied Mathematics and Computation 147 (2004), 97-113. https://doi.org/10.1016/S0096-3003(02)00654-9
- V. Shanthi and N.Ramanujam, A boundary value technique for boundary value problems for singularly perturbed fourth-order ordinary differential equations, Computers and Mathematics 47 (2004), 1673-1688.
- V. Shanthi and N. Ramanujam, Asymptotic numerical fitted mesh method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type, Applied Mathematics and computation 133 (2002), 559-579. https://doi.org/10.1016/S0096-3003(01)00257-0
- V. Shanthi and N. Ramanujam, Asymptotic numerical method for boundary value problems for singularly perturbed fourth order ordinary differential equations with a weak interior layer, Applied Mathematics and computation 172 (2006), 252-266. https://doi.org/10.1016/j.amc.2005.01.140
- G. Sun, M. Stynes, Finite element methods for singularly perturbed higher order elliptic two-point boundary value problems I : Reaction-diffusion type problem, IMA, J.Numeri.Anal. 15 (1995), 117-139. https://doi.org/10.1093/imanum/15.1.117
- G. Sun, M. Stynes, Finite element methods for singularly perturbed higher order elliptic two-point boundary value problems II : convection-diffusion type problem, IMA, J.Numeri.Anal. 15 (1995), 197-219. https://doi.org/10.1093/imanum/15.2.197
- S. Valarmathi and N. Ramanujam, Boundary value technique for finding numerical solution to boundary value problems for third order singularly perturbed ordinary differential equations, Intern. J. Computer Math. 79 (2002), 747-763. https://doi.org/10.1080/00207160211284
- S. Valarmathi and N. Ramanujam, An asymptotic numerical method for singularly perturbed third order ordinary differential equations of convection-diffusion type, Computers and Mathematics with Applications 44 (2002), 693-710. https://doi.org/10.1016/S0898-1221(02)00183-9
- S. Valarmathi and N. Ramanujam, An asymptotic numerical fitted mesh method for singularly perturbed third order ordinary differential equations of reaction-diffusion type, Applied Mathematics and computation 132 (2002), 87-104. https://doi.org/10.1016/S0096-3003(01)00179-5
- S. Valarmathi and N. Ramanujam, A computational method for solving boundary value problems for third -order singularly perturbed ordinary differential equation, Applied Mathematics and computation 129 (2007), 345-373.
- J. Vigo-Aguiar and S. Natesan, An efficient numerical method for singular perturbation problems, Journal of Computational and Applied Mathematics 192 (2006), 132-141. https://doi.org/10.1016/j.cam.2005.04.042
- J. Vigo-Aguiar and S. Natesan, A parallel boundary value technique for singularly perturbed two-point boundary problems, The Journal of Super computing 27 (2004), 195-206.
- Zhao Weili, Singular perturbations of boundary value problems for a class of third order non-linear ordinary differential equations, Journal Differential equations 88 (1990), 265-278. https://doi.org/10.1016/0022-0396(90)90099-B
- Zhao Weili, Singular perturbations for third order non-linear boundary value problem, Non-linear Analysis, Theory, Methods and applications, 1994.
- S.A. Khuri, A.Sayfy, Self adjoint singularly perturbed second order two point boundary problems: A patching approach, Applied Mathematical Modelling 38 (2014), 2901-2914. https://doi.org/10.1016/j.apm.2013.11.016
- S.A. Khuri, Ali Sayfy, The boundary layer problem: A fourth-order collocation approach, Computers and Mathematics with Applications 64 (2012), 2089-2099. https://doi.org/10.1016/j.camwa.2012.04.005