DOI QR코드

DOI QR Code

Production of Curcuminoids in Engineered Escherichia coli

  • Kim, Eun Ji (Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Cha, Mi Na (Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Bong-Gyu (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Ahn, Joong-Hoon (Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Received : 2017.01.13
  • Accepted : 2017.03.09
  • Published : 2017.05.28

Abstract

Curcumin, a hydrophobic polyphenol derived from the rhizome of the herb Curcuma longa, possesses diverse pharmacological properties, including anti-inflammatory, antioxidant, antiproliferative, and antiangiogenic activities. Two curcuminoids (dicinnamoylmethane and bisdemethoxycurcumin) were synthesized from glucose in Escherichia coli. PAL (phenylalanine ammonia lyase) or TAL (tyrosine ammonia lyase), along with Os4CL (p-coumaroyl-CoA ligase) and CUS (curcumin synthase) genes, were introduced into E. coli, and each strain produced dicinnamoylmethane or bisdemethoxycurcumin, respectively. In order to increase the production of curcuminoids in E. coli, the shikimic acid biosynthesis pathway, which increases the substrates for curcuminoid biosynthesis, was engineered. Using the engineered strains, the production of bisdemethoxycurcumin increased from 0.32 to 4.63 mg/l, and that of dicinnamoylmethane from 1.24 to 6.95 mg/l.

Keywords

References

  1. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425: 191-196. https://doi.org/10.1038/nature01960
  2. de Lemos ML. 2001. Effects of soy phytoestrogens genistein and daidzein on breast cancer growth. Ann. Pharmacother. 35: 11118-11121.
  3. Tonetti DA, Zhang Y, Zhao H, Lim SB, Constantinou AI. 2007. The effect of the phytoestrogens genistein, daidzein, and equol on the growth of tamoxifen-resistant $T47D/PKC{\alpha}$. Nutr. Cancer 58: 1222-1229.
  4. Sharma RA, G escher A J, S teward WP. 2005. Curcumin: the story so far. Eur. J. Cancer 41: 1955-1968. https://doi.org/10.1016/j.ejca.2005.05.009
  5. Aggarwal BB, Sung B. 2008. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharm. Sci. 30: 85-94.
  6. Wilken R, Veena MS, Wang MB, Srivatsan ES. 2011. Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 10: 12. https://doi.org/10.1186/1476-4598-10-12
  7. Jayaprakasha GK, Rao LJ, Sakariah KK. 2006. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem. 98: 720-724. https://doi.org/10.1016/j.foodchem.2005.06.037
  8. Siwak DR, Shishodia S, Aggarwal BB, Kurzrock R. 2005. Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of $I{\kappa}B$ kinase and nuclear factor ${\kappa}B$ activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer 104: 879-890. https://doi.org/10.1002/cncr.21216
  9. Yoysungnoen P, Wirachwong P, Changtam C, Suksamrarn A, Patumraj S. 2008. Anti-cancer and anti-angiogenic effects of curcumin and tetrahydrocurcumin on implanted hepatocellular carcinoma in nude mice. World J. Gastroenterol. 14: 2003-2009. https://doi.org/10.3748/wjg.14.2003
  10. Mishra S, Palanivelu K. 2008. The effect of curcumin (turmeric) on Alzheimer's disease: an overview. Ann. Indian Acad. Neurol. 11: 13-19. https://doi.org/10.4103/0972-2327.40220
  11. Venigalla M, Gyengesi E, Münch G. 2015. Curcumin and apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer's disease. Neural Regen. Res. 10: 1181-1185. https://doi.org/10.4103/1673-5374.162686
  12. Vyas A, Dandawate P, Padhye S, Ahmad A, Sarkar F. 2013. Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Curr. Pharm. Des. 19: 2047- 2069.
  13. Youssef KM, El-Sherbeny MA, El-Shafie FS, Farag HA, Al- Deeb OA, Awadalla SA. 2004. Synthesis of curcumin analogues as potential antioxidant, cancer chemopreventive agents. Arch. Pharm. 337: 42-54. https://doi.org/10.1002/ardp.200300763
  14. Austin MB, Noel JP. 2003. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20: 79-110. https://doi.org/10.1039/b100917f
  15. Flores-Sanchez IJ, Verpoorte R. 2009. Plant polyketide synthase: a fascinating group of enzymes. Plant Physiol. Biochem. 47: 167-174. https://doi.org/10.1016/j.plaphy.2008.11.005
  16. Katsuyama Y, Matsuzawa M, Funa N, Horinouchi S. 2007. In vitro synthesis of curcuminoids by type III polyketide synthase from Oryza sativa. J. Biol. Chem. 282: 37702-37709. https://doi.org/10.1074/jbc.M707569200
  17. Katsuyama Y, Kita T, Funa N, Horinouchi S. 2009. Curcuminoid biosynthesis by two type III polyketide synthases in the herb Curcuma longa. J. Biol. Chem. 284: 11160-11170. https://doi.org/10.1074/jbc.M900070200
  18. Wang J, Guleria S, Koffas MA, Yan Y. 2016. Microbial production of value-added nutraceuticals. Curr. Opin. Biotechnol. 37: 97-104. https://doi.org/10.1016/j.copbio.2015.11.003
  19. An DG, Cha MN, Nadarajan SP, Kim BG, Ahn J-H. 2016. Bacterial synthesis of four hydroxycinnamic acids. Appl. Biol. Chem. 59: 173-179.
  20. Kim MJ, Kim B-G, Ahn J-H. 2013. Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli. Appl. Microbiol. Biotechnol. 97: 7195-7204. https://doi.org/10.1007/s00253-013-5020-9
  21. Lee YJ, Jeon Y, Lee JS, Kim BG, Lee CH, Ahn J-H. 2007. Enzymatic synthesis of phenolic CoAs using 4-coumarate: coenzyme A ligase (4CL) from rice. Bull. Korean Chem. Soc. 28: 365-366. https://doi.org/10.5012/bkcs.2007.28.3.365
  22. Kim S-K, Kim DH, Kim BG, Jeon YM, Hong BS, Ahn J-H. 2009. Cloning and characterization of the UDP glucose/ galactose epimerases of Oryza sativa. J. Korean Soc. Appl. Biol. Chem. 52: 315-320. https://doi.org/10.3839/jksabc.2009.056
  23. Kim MK, Jeong W , Kang J , Chong Y. 2011. Significant enhancement in radical-scavenging activity of curcuminoids conferred by acetoxy substituent at the central methylene carbon. Bioorg. Med. Chem. 19: 3793-3800. https://doi.org/10.1016/j.bmc.2011.04.055
  24. Cochrane FC, Davin LB, Lewis NG. 2004. The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry 65: 1157-1564.
  25. Berner M, Krug D, Gihlmaier C, Vente A, Muller R, Bechthold A. 2006. Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis. J. Bacteriol. 188: 2666-2673. https://doi.org/10.1128/JB.188.7.2666-2673.2006
  26. Santos CNS, Koffas M, Stephanopoulos G. 2011. Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab. Eng. 13: 392-400. https://doi.org/10.1016/j.ymben.2011.02.002
  27. Sariaslani FS. 2007. Development of a combined biological and chemical process for production of industrial aromatics from renewable resources. Annu. Rev. Microbiol. 61: 51-69. https://doi.org/10.1146/annurev.micro.61.080706.093248
  28. Lutke-Eversloh T, Stephanopoulos G. 2007. L-Tyrosine production by deregulated strains of Escherichia coli. Appl. Microbiol. Biotechnol. 75: 103-110. https://doi.org/10.1007/s00253-006-0792-9
  29. Patnaik R, Liao JC. 1994. Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl. Environ. Microbiol. 60: 3903-3908.
  30. Rodrigues JL, Araújo RG, Prather KLJ, Kluskens LD, Rodrigues LR. 2015. Production of curcuminoids from tyrosine by a metabolically engineered Escherichia coli using caffeic acid as an intermediate. Biotechnol. J. 10: 599-609. https://doi.org/10.1002/biot.201400637

Cited by

  1. Recent Advances in the Recombinant Biosynthesis of Polyphenols vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.02259
  2. Optimization of fermentation conditions for the production of curcumin by engineered Escherichia coli vol.14, pp.133, 2017, https://doi.org/10.1098/rsif.2017.0470
  3. Engineering Escherichia coli Co‐Cultures for Production of Curcuminoids From Glucose vol.13, pp.5, 2017, https://doi.org/10.1002/biot.201700576
  4. Tailoring of microbes for the production of high value plant-derived compounds: From pathway engineering to fermentative production vol.1867, pp.11, 2017, https://doi.org/10.1016/j.bbapap.2019.140262
  5. Increased Production of Dicinnamoylmethane Via Improving Cellular Malonyl-CoA Level by Using a CRISPRi in Escherichia coli vol.190, pp.1, 2017, https://doi.org/10.1007/s12010-019-03206-8
  6. A Combinatorial Approach to Optimize the Production of Curcuminoids From Tyrosine in Escherichia coli vol.8, pp.None, 2017, https://doi.org/10.3389/fbioe.2020.00059
  7. Purification of Curcumin from Ternary Extract-Similar Mixtures of Curcuminoids in a Single Crystallization Step vol.10, pp.3, 2017, https://doi.org/10.3390/cryst10030206