DOI QR코드

DOI QR Code

Expression and Characterization of a Single-Chain Variable Fragment against Human LOX-1 in Escherichia coli and Brevibacillus choshinensis

  • Hu, Wei (School of Life Science, Jilin University) ;
  • Xiang, Jun-Yan (School of Life Science, Jilin University) ;
  • Kong, Ping (School of Life Science, Jilin University) ;
  • Liu, Ling (School of Life Science, Jilin University) ;
  • Xie, Qiuhong (School of Life Science, Jilin University) ;
  • Xiang, Hongyu (School of Life Science, Jilin University)
  • Received : 2017.02.06
  • Accepted : 2017.03.09
  • Published : 2017.05.28

Abstract

The single-chain variable fragment (scFv) against lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a promising molecule for its potential use in the diagnosis and immunotherapy of atherosclerosis. Producing this scFv in several milligram amounts could be the starting point for further engineering and application of the scFv. In this study, the abundant expression of the anti-LOX-1 scFv was attempted using Escherichia coli (E. coli) and Brevibacillus choshinensis (B. choshinensis). The scFv had limited soluble yield in E. coli, but it was efficiently secreted by B. choshinensis. The optimized fermentation was determined using the Plackett-Burman screening design and response surface methodology, under which the yield reached up to 1.5 g/l in a 5-L fermentor. Moreover, the properties of the scFvs obtained from the two expression systems were different. The antigen affinity, transition temperature, and particle diameter size were 1.01E-07 M, $55.2{\pm}0.3^{\circ}C$, and 9.388 nm for the scFv expressed by B. choshinensis, and 4.53E-07 M, $52.5{\pm}0.3^{\circ}C$, and 13.54 nm for the scFv expressed by E. coli. This study established an efficient scale-up production methodology for the anti-LOX-1 scFv, which will boost its use in LOX-1-based therapy.

Keywords

References

  1. Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, Aiba Y, et al. 1997. An endothelial receptor for oxidized low-density lipoprotein. Nature 386: 73-77. https://doi.org/10.1038/386073a0
  2. Ding Z, Liu S, Wang X, Dai Y, Khaidakov M, Romeo F, Mehta JL. 2014. LOX-1, oxidant stress, mtDNA damage, autophagy, and immune response in atherosclerosis. Can. J. Physiol. Pharmacol. 92: 524-530. https://doi.org/10.1139/cjpp-2013-0420
  3. Xu S, Ogura S, Chen J, Little PJ, Moss J, Liu P. 2013. LOX-1 in atherosclerosis: biological functions and pharmacological modifiers. Cell. Mol. Life Sci. 70: 2859-2872. https://doi.org/10.1007/s00018-012-1194-z
  4. Murase T, Kume N, Kataoka H, Minami M, Sawamura T, Masaki T, et al. 2000. Identification of soluble forms of lectin-like oxidized LDL receptor-1. Arterioscler. Thromb. Vasc. Biol. 20: 715-720. https://doi.org/10.1161/01.ATV.20.3.715
  5. Shaw DJ, Seese R, Ponnambalam S, Ajjan R. 2014. The role of lectin-like oxidised low-density lipoprotein receptor-1 in vascular pathology. Diab. Vasc. Dis. Res. 11: 410-418. https://doi.org/10.1177/1479164114547704
  6. Li D, Patel AR, Klibanov AL, Kramer CM, Ruiz M, Kang BY, et al. 2010. Molecular imaging of atherosclerotic plaques targeted to oxidized LDL receptor LOX-1 by SPECT/CT and magnetic resonance. Circ. Cardiovasc. Imaging 3: 464-472. https://doi.org/10.1161/CIRCIMAGING.109.896654
  7. Yamada T. 2011. Therapeutic monoclonal antibodies. Keio J. Med. 60: 37-46. https://doi.org/10.2302/kjm.60.37
  8. Andersen DC, Reilly DE. 2004. Production technologies for monoclonal antibodies and their fragments. Curr. Opin. Biotechnol. 15: 456-462. https://doi.org/10.1016/j.copbio.2004.08.002
  9. Tokunaga M, Mizukami M, Yamasaki K, Tokunaga H, Onishi H, Hanagata H, et al. 2013. Secretory production of single-chain antibody (scFv) in Brevibacillus choshinensis using novel fusion partner. Appl. Microbiol. Biotechnol. 97: 8569-8580. https://doi.org/10.1007/s00253-013-4695-2
  10. Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NB, Hamid M. 2012. scFv antibody: principles and clinical application. Clin. Dev. Immunol. 2012: 980250.
  11. Iwamoto S, Fujita Y, Kakino A, Yanagida K, Matsuda H, Yoshimoto R, et al. 2011. An alternative protein standard to measure activity of LOX-1 ligand containing apoB (LAB) - utilization of anti-LOX-1 single-chain antibody fused to apoB fragment. J. Atheroscler. Thromb. 18: 818-828. https://doi.org/10.5551/jat.9142
  12. Babaei A, Zarkesh-Esfahani SH, Gharagozloo M. 2011. Production of a recombinant anti-human CD4 single-chain variable-fragment antibody using phage display technology and its expression in Escherichia coli. J. Microbiol. Biotechnol. 21: 529-535. https://doi.org/10.4014/jmb.1010.10022
  13. Shahryari F, Safarnejad MR, Shams-Bakhsh M, Schillberg S, Nolke G. 2013. Generation and expression in plants of a single-chain variable fragment antibody against the immunodominant membrane protein of Candidatus Phytoplasma aurantifolia. J. Microbiol. Biotechnol. 23: 1047-1054. https://doi.org/10.4014/jmb.1301.01054
  14. Groff D, Armstrong S, Rivers PJ, Zhang J, Yang J, Green E, et al. 2014. Engineering toward a bacterial "endoplasmic reticulum" for the rapid expression of immunoglobulin proteins. MAbs 6: 671-678. https://doi.org/10.4161/mabs.28172
  15. Liu A, Ye Y, Chen W, Wang X, Chen F. 2015. Expression of V(H)-linker-V(L) orientation-dependent single-chain Fv antibody fragment derived from hybridoma 2E6 against aflatoxin B1 in Escherichia coli. J. Ind. Microbiol. Biotechnol. 42: 255-262. https://doi.org/10.1007/s10295-014-1570-9
  16. Chen C, Snedecor B, Nishihara JC, Joly JC, McFarland N, Andersen DC, et al. 2004. High-level accumulation of a recombinant antibody fragment in the periplasm of Escherichia coli requires a triple-mutant (degP prc spr) host strain. Biotechnol. Bioeng. 85: 463-474. https://doi.org/10.1002/bit.20014
  17. Mu T, Liang W, Ju Y, Wang Z, Wang Z, Roycik MD, et al. 2013. Efficient soluble expression of secreted matrix metalloproteinase 26 in Brevibacillus choshinensis. Protein Expr. Purif. 91: 125-133. https://doi.org/10.1016/j.pep.2013.07.012
  18. Choy CJ, Berkman CE. 2016. A method to determine the mode of binding for GCPII inhibitors using bio-layer interferometry. J. Enzyme Inhib. Med. Chem. 31: 1690-1693. https://doi.org/10.3109/14756366.2015.1132208
  19. Liu Y, Meng Z, Shi R, Zhan L, Hu W, Xiang H, et al. 2015. Effects of temperature and additives on the thermal stability of glucoamylase from Aspergillus niger. J. Microbiol. Biotechnol. 25: 33-43. https://doi.org/10.4014/jmb.1406.06045
  20. Gao YS, Su JT, Yan YB. 2010. Sequential events in the irreversible thermal denaturation of human brain-type creatine kinase by spectroscopic methods. Int. J. Mol. Sci. 11: 2584- 2596. https://doi.org/10.3390/ijms11072584
  21. Cheng YM, Lu MT, Yeh CM. 2015. Functional expression of recombinant human trefoil factor 1 by Escherichia coli and Brevibacillus choshinensis. BMC Biotechnol. 15: 32. https://doi.org/10.1186/s12896-015-0149-5
  22. Onishi H, Mizukami M, Hanagata H, Tokunaga M, Arakawa T, Miyauchi A. 2013. Efficient production of anti-fluorescein and anti-lysozyme as single-chain anti-body fragments (scFv) by Brevibacillus expression system. Protein Expr. Purif. 91: 184-191. https://doi.org/10.1016/j.pep.2013.08.005
  23. Hanagata H, Mizukami M, Miyauchi A. 2014. Efficient expression of antibody fragments with the Brevibacillus expression system. Antibodies 3: 242-252. https://doi.org/10.3390/antib3020242
  24. D'Urzo N, Martinelli M, Nenci C, Brettoni C, Telford JL, Maione D. 2013. High-level intracellular expression of heterologous proteins in Brevibacillus choshinensis SP3 under the control of a xylose inducible promoter. Microb. Cell Fact. 12: 12. https://doi.org/10.1186/1475-2859-12-12
  25. Maehashi K, Matano M, Saito M, Udaka S. 2010. Extracellular production of riboflavin-binding protein, a potential bitter inhibitor, by Brevibacillus choshinensis. Protein Expr. Purif. 71: 85-90. https://doi.org/10.1016/j.pep.2009.12.016
  26. Zou C, Duan X, Wu J. 2016. Efficient extracellular expression of Bacillus deramificans pullulanase in Brevibacillus choshinensis. J. Ind. Microbiol. Biotechnol. 43: 495-504. https://doi.org/10.1007/s10295-015-1719-1
  27. Gaciarz A, Veijola J, Uchida Y, Saaranen MJ, Wang C, Horkko S, Ruddock LW. 2016. Systematic screening of soluble expression of antibody fragments in the cytoplasm of E. coli. Microb. Cell Fact. 15: 22. https://doi.org/10.1186/s12934-016-0419-5
  28. Tsybovsky Y, Shubenok DV, Kravchuk ZI, Martsev SP. 2007. Folding of an antibody variable domain in two functional conformations in vitro: calorimetric and spectroscopic study of the anti-ferritin antibody VL domain. Protein Eng. Des. Sel. 20: 481-490. https://doi.org/10.1093/protein/gzm034
  29. Baden EM, Owen BA, Peterson FC, Volkman BF, Ramirez- Alvarado M, Thompson JR. 2008. Altered dimer interface decreases stability in an amyloidogenic protein. J. Biol. Chem. 283: 15853-15860. https://doi.org/10.1074/jbc.M705347200
  30. Panchal J, Kotarek J, Marszal E, Topp EM. 2014. Analyzing subvisible particles in protein drug products: a comparison of dynamic light scattering (DLS) and resonant mass measurement (RMM). AAPS J. 16: 440-451. https://doi.org/10.1208/s12248-014-9579-6
  31. Jonasson P, Liljeqvist S, Nygren PA, Stahl S. 2002. Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechnol. Appl. Biochem. 35: 91-105. https://doi.org/10.1042/BA20010099
  32. Turoverov KK, Haitlina SY, Pinaev GP. 1976. Ultra-violet fluorescence of actin. Determination of native actin content in actin preparations. FEBS Lett. 62: 4-6. https://doi.org/10.1016/0014-5793(76)80003-8

Cited by

  1. Improved scFv Anti-LOX-1 Binding Activity by Fusion with LOX-1-Binding Peptides vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/8946935
  2. Preparation and Antioxidant Activities In Vitro of a Designed Antioxidant Peptide from Pinctada fucata by Recombinant Escherichia coli vol.28, pp.1, 2017, https://doi.org/10.4014/jmb.1708.08032
  3. Production of recombinant beta-amylase ofBacillus aryabhattai vol.49, pp.1, 2019, https://doi.org/10.1080/10826068.2018.1536987
  4. Immunocontraceptive Effects in Male Rats Vaccinated with Gonadotropin-Releasing Hormone-I and -II Protein Complex vol.29, pp.4, 2019, https://doi.org/10.4014/jmb.1901.01067
  5. Solubility, Stability, and Avidity of Recombinant Antibody Fragments Expressed in Microorganisms vol.11, pp.None, 2017, https://doi.org/10.3389/fmicb.2020.01927
  6. Available strategies for improved expression of recombinant proteins in Brevibacillus expression system: a review vol.40, pp.7, 2017, https://doi.org/10.1080/07388551.2020.1805404
  7. Induction of immunocontraceptive effects in both male and female mice immunized with GnRH vaccine vol.7, pp.5, 2017, https://doi.org/10.1002/vms3.563