DOI QR코드

DOI QR Code

Optimization of Herbicidin A Production in Submerged Culture of Streptomyces scopuliridis M40

  • Received : 2016.11.02
  • Accepted : 2017.02.23
  • Published : 2017.05.28

Abstract

Herbicidin A is a potent herbicide against dicotyledonous plants as well as an antibiotic against phytopathogens. In this study, fermentation parameters for herbicidin A production in submerged culture of Streptomyces scopuliridis M40 were investigated. The herbicidin A concentration varied with the C/N ratio. High C/N ratios (>4) resulted in a herbicidin A production of more than 900 mg/l, whereas maximally 600 mg/l was obtained at ratios between 1 and 3.5. In 5-L batch fermentation, there was a positive correlation between the oxygen uptake rate (OUR) and herbicidin A production. Once the OUR increased, the substrate consumption rate increased, leading to an increase in volumetric productivity. Mechanical shear force affected the hyphal morphology and OUR. When the medium value of hyphal size ranged from 150 to $180{\mu}m$, high volumetric production of herbicidin A was obtained with OUR values >137mg $O_2/l{\cdot}h$. The highest herbicidin A concentration of 956.6 mg/l was obtained at 500 rpm, and coincided with the highest relative abundance of hyphae of $100-200{\mu}m$ length and the highest OUR during cultivation. Based on a constant impeller tip speed, which affects hyphal morphology, herbicidin A production was successfully scaled up from a 5-L jar to a 500-L pilot vessel.

Keywords

References

  1. McErlich AF, Boydston RA. 2014. Current state of weed management in organic and conventional cropping systems, pp. 11-32. In Young SL, Pierce FJ (eds.). Automation: The Future of Weed Control in Cropping Systems. Springer, Netherlands.
  2. Rahman A, James TK, Trolove MR, Dowsett C. 2011. Factors affecting the persistence of some residual herbicides in maize silage fields. N. Z. Plant Prot. 64: 125-132.
  3. Williams GM, Kroes R, Munro IC. 2000. Safety evaluation and risk assessment of the herbicide roundup and its active ingredient, glyphosate, for humans. Regul. Toxicol. Pharmacol. 31: 117-165. https://doi.org/10.1006/rtph.1999.1371
  4. Hoagland RE, Boyette CD, Weaver MA, Abbas HK. 2007. Bioherbicides: research and risks. Toxin Rev. 26: 313-342. https://doi.org/10.1080/15569540701603991
  5. Joseph B, Sankarganesh P, Edwin BT, Raj SJ. 2012. Endophytic streptomycetes from plants with novel green chemistry: review. Int. J. Biol. Chem. 6: 42-52. https://doi.org/10.3923/ijbc.2012.42.52
  6. Arai M, Haneishi T, Kitahara N, Enokita R, Kawakubo K, Kondo Y. 1976. Herbicidins A and B, two new antibiotics with herbicidal activity. I. Producing organism and biological activities. J. Antibiot. 29: 863-869. https://doi.org/10.7164/antibiotics.29.863
  7. Bhatia SK, Lee B-R, Sathiyanarayanan G, Song H-S, Kim J, Jeon J-M, et al. 2016. Medium engineering for enhanced production of undecylprodigiosin antibiotic in Streptomyces coelicolor using oil palm biomass hydrolysate as a carbon source. Bioresour. Technol. 217: 141-149. https://doi.org/10.1016/j.biortech.2016.02.055
  8. Bhatia SK, L ee B-R, S athiy anarayanan G , Song H S, K im J , Jeon J-M, et al. 2016. Biomass-derived molecules modulate the behavior of Streptomyces coelicolor for antibiotic production. 3 Biotech 6: 223.
  9. Oskay M. 2009. Antifungal and antibacterial compounds from Streptomyces strains. Afr. J. Biotechnol. 8: 3007-3017.
  10. Reis SA, Moussatché N, Damaso CRA. 2006. FK506, a secondary metabolite produced by Streptomyces, presents a novel antiviral activity against Orthopoxvirus infection in cell culture. J. Appl. Microbiol. 100: 1373-1380. https://doi.org/10.1111/j.1365-2672.2006.02855.x
  11. Won OJ, Kim YT, Choi JS, Oh T-K, Shinogi Y, Park KW. 2016. Herbicidal activity and mode of action of Streptomyces scopuliridis metabolites. J. Fac. Agric. Kyushu Univ. 61: 47-51.
  12. Takeuchi S, Hirayama K, Ueda K, Sakai H, Yonehara H. 1958. Blasticidin S, a new antibiotic. J. Antibiot. 11: 1-5.
  13. Heisey RM, Putnam AR. 1990. Herbicidal activity of the antibiotics geldanamycin and nigericin. J. Plant Growth Regul. 9: 19-25.
  14. Nakajima M, Itoi K, Takamatsu Y, Kinoshita T, Okazaki T, Kawakubo K, et al. 1991. Hydantocidin: a new compound with herbicidal activity from Streptomyces hygroscopicus. J. Antibiot. 44: 293-300. https://doi.org/10.7164/antibiotics.44.293
  15. Lee B, Kim JD, Kim YS, Ko YK, Yon GH, Kim C-J, et al. 2013. Identification of Streptomyces scopuliridis KR-001 and its herbicidal characteristics. Weed Turf. Sci. 2: 38-46. https://doi.org/10.5660/WTS.2013.2.1.038
  16. Won OJ, Kim YT, Kim JD, Choi JS, Ko YK, Park KW. 2015. Herbicidal activity of herbicidin from a strain of soil actinomycete Streptomyces scopuliridis. Weed Turf. Sci. 4: 219-224. https://doi.org/10.5660/WTS.2015.4.3.219
  17. Kim JD, Sin HT, Kim YS, Ko YK, Cho NK, Hwang KH, et al. 2015. The influence of adjuvants on herbicide activity of Streptomyces scopuliridis KR-001. Weed Turf. Sci. 4: 288-294. https://doi.org/10.5660/WTS.2015.4.4.288
  18. Sanchez S, Chavez A, Forero A, Garcia-Huante Y, Romero A, Sanchez M, et al. 2010. Carbon source regulation of antibiotic production. J. Antibiot. 63: 442-459. https://doi.org/10.1038/ja.2010.78
  19. Wentzel A, Bruheim P, Overby A, Jakobsen OM, Sletta H, Omara WAM, et al. 2012. Optimized submerged batch fermentation strategy for systems scale studies of metabolic switching in Streptomyces coelicolor A3(2). BMC Syst. Biol. 6: 59. https://doi.org/10.1186/1752-0509-6-59
  20. Dobson LF, O'Cleirigh CC, O'Shea DG. 2008. The influence of morphology on geldanamycin production in submerged fermentations of Streptomyces hygroscopicus var. geldanus. Appl. Microbiol. Biotechnol. 79: 859-866. https://doi.org/10.1007/s00253-008-1493-3
  21. van Veluw GJ, Petrus MLC, Gubbens J, de Graaf R, de Jong IP, van Wezel GP, et al. 2012. Analysis of two distinct mycelial populations in liquid-grown Streptomyces cultures using a flow cytometry-based proteomics approach. Appl. Microbiol. Biotechnol. 96: 1301-1312. https://doi.org/10.1007/s00253-012-4490-5
  22. Olmos E, Mehmood N, Husein HL, Goergen J-L, Fick M, Delaunay S. 2013. Effects of bioreactor hydrodynamics on the physiology of Streptomyces. Bioprocess Biosyst. Eng. 36: 259-272. https://doi.org/10.1007/s00449-012-0794-1
  23. Ozergin-Ulgen K, Mavituna F. 1998. Oxygen transfer and uptake in Streptomyces coelicolor A3(2) culture in a batch bioreactor. J. Chem. Technol. Biotechnol. 73: 243-250. https://doi.org/10.1002/(SICI)1097-4660(1998110)73:3<243::AID-JCTB957>3.0.CO;2-5
  24. Miller JH. 1992. A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. USA.
  25. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  26. Bandyopadhyay B, Humphrey AE. 1967. Dynamic measurement of the volumetric oxygen transfer coefficient in fermentation systems. Biotechnol. Bioeng. 9: 533-544. https://doi.org/10.1002/bit.260090408
  27. Papagianni M. 2004. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv. 22: 189-259. https://doi.org/10.1016/j.biotechadv.2003.09.005
  28. Yang J, Jiao RH, Yao LY, Han WB, Lu YH, Tan RX. 2016. Control of fungal morphology for improved production of a novel antimicrobial alkaloid by marine-derived fungus Curvularia sp. IFB-Z10 under submerged fermentation. Process Biochem. 51: 185-194. https://doi.org/10.1016/j.procbio.2015.11.025
  29. Yegneswaran PK, Gray MR, Thompson BG. 1991. Effect of dissolved oxygen control on growth and antibiotic production in Streptomyces clavuligerus fermentations. Biotechnol. Prog. 7: 246-250. https://doi.org/10.1021/bp00009a008
  30. El-Enshasy HA, F arid M A, E l-Say ed E -SA. 2000. Influence of inoculum type and cultivation conditions on natamycin production by Streptomyces natalensis. J. Basic Microbiol. 40: 333-342. https://doi.org/10.1002/1521-4028(200012)40:5/6<333::AID-JOBM333>3.0.CO;2-Q
  31. Tamura S, Park Y, Toriyama M, Okabe M. 1997. Change of mycelial morphology in tylosin production by batch culture of Streptomyces fradiae under various shear conditions. J. Ferment. Bioeng. 83: 523-528. https://doi.org/10.1016/S0922-338X(97)81131-2
  32. Karrow EO, Bartholomew WH, Sfat MR. 1953. Oxygen transfer and agitation in submerged fermentations. J. Agric. Food Chem. 1: 302-306. https://doi.org/10.1021/jf60004a003
  33. Griot M, Saner U, Heinzle E, Dunn IJ, Bourne JR. 1988. Fermenter scale-up using an oxygen-sensitive culture. Chem. Eng. Sci. 43: 1903-1908. https://doi.org/10.1016/0009-2509(88)87060-X
  34. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  35. Kim HJ, Kim JH, Oh HJ, Shin CS. 2002. Morphological control of Monascus cells and scale-up of pigment fermentation. Process Biochem. 38: 649-655. https://doi.org/10.1016/S0032-9592(02)00095-X

Cited by

  1. Identification and Interrogation of the Herbicidin Biosynthetic Gene Cluster: First Insight into the Biosynthesis of a Rare Undecose Nucleoside Antibiotic vol.139, pp.46, 2017, https://doi.org/10.1021/jacs.7b08985
  2. Process development of oxalic acid production in submerged culture of Aspergillus niger F22 and its biocontrol efficacy against the root-knot nematode Meloidogyne incognita vol.41, pp.3, 2017, https://doi.org/10.1007/s00449-017-1867-y
  3. Streptomyces Differentiation in Liquid Cultures as a Trigger of Secondary Metabolism vol.7, pp.2, 2017, https://doi.org/10.3390/antibiotics7020041
  4. Isolation, identification and characterization of Streptomyces metabolites as a potential bioherbicide vol.14, pp.9, 2019, https://doi.org/10.1371/journal.pone.0222933
  5. Isolation, identification and characterization of Streptomyces metabolites as a potential bioherbicide vol.14, pp.9, 2019, https://doi.org/10.1371/journal.pone.0222933
  6. Exploring novel herbicidin analogues by transcriptional regulator overexpression and MS/MS molecular networking vol.18, pp.None, 2017, https://doi.org/10.1186/s12934-019-1225-7