DOI QR코드

DOI QR Code

Structure-Based Virtual Screening of Protein Tyrosine Phosphatase Inhibitors: Significance, Challenges, and Solutions

  • Reddy, Rallabandi Harikrishna (Department of Biomedical Chemistry and Nanotechnology Research Center, Konkuk University) ;
  • Kim, Hackyoung (Department of Biomedical Chemistry and Nanotechnology Research Center, Konkuk University) ;
  • Cha, Seungbin (Department of Biomedical Chemistry and Nanotechnology Research Center, Konkuk University) ;
  • Lee, Bongsoo (School of Energy Systems Engineering, Chungang University) ;
  • Kim, Young Jun (Department of Biomedical Chemistry and Nanotechnology Research Center, Konkuk University)
  • Received : 2017.02.02
  • Accepted : 2017.02.16
  • Published : 2017.05.28

Abstract

Phosphorylation, a critical mechanism in biological systems, is estimated to be indispensable for about 30% of key biological activities, such as cell cycle progression, migration, and division. It is synergistically balanced by kinases and phosphatases, and any deviation from this balance leads to disease conditions. Pathway or biological activity-based abnormalities in phosphorylation and the type of involved phosphatase influence the outcome, and cause diverse diseases ranging from diabetes, rheumatoid arthritis, and numerous cancers. Protein tyrosine phosphatases (PTPs) are of prime importance in the process of dephosphorylation and catalyze several biological functions. Abnormal PTP activities are reported to result in several human diseases. Consequently, there is an increased demand for potential PTP inhibitory small molecules. Several strategies in structure-based drug designing techniques for potential inhibitory small molecules of PTPs have been explored along with traditional drug designing methods in order to overcome the hurdles in PTP inhibitor discovery. In this review, we discuss druggable PTPs and structure-based virtual screening efforts for successful PTP inhibitor design.

Keywords

References

  1. Li LW, Dixon JE. 2000. Form, function, and regulation of protein tyrosine phosphatases and their involvement in human diseases. Semin. Immunol. 12: 75-84. https://doi.org/10.1006/smim.2000.0209
  2. Dudits D. 2004. Protein phosphorylation as key control mechanism in plant cell division. Acta Physiol. Plant. 26: 4.
  3. Leung KT, Li KKH, Sun SSM, Chan PKS, Ooi VEC, Chiu LCM. 2008. Activation of the JNK pathway promotes phosphorylation and degradation of Bim(EL) - a novel mechanism of chemoresistance in T-cell acute lymphoblastic leukemia. Carcinogenesis 29: 544-551.
  4. Sharma K, D'Souza RCJ, Tyanova S, Schaab C, Wisniewski JR, Cox J, Mann M. 2014. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thrbased signaling. Cell Rep. 8: 1583-1594. https://doi.org/10.1016/j.celrep.2014.07.036
  5. Byrum CA, Walton KD, Robertson AJ, Carbonneau S, Thomason RT, Coffman JA, McClay DR. 2006. Protein tyrosine and serine-threonine phosphatases in the sea urchin, Strongylocentrotus purpuratus: identification and potential functions. Dev. Biol. 300: 194-218. https://doi.org/10.1016/j.ydbio.2006.08.050
  6. Macho AP, Lozano-Duran R, Zipfel C. 2015. Importance of tyrosine phosphorylation in receptor kinase complexes. Trends Plant Sci. 20: 269-272. https://doi.org/10.1016/j.tplants.2015.02.005
  7. Derrien A, Druey K. 2000. Importance of tyrosine phosphorylation of RGS16 in the inhibition of G-proteincoupled MAP kinase stimulation. J. Allergy Clin. Immun. 105: S172-S173.
  8. Morimura T, Ogawa M. 2009. Relative importance of the tyrosine phosphorylation sites of Disabled-1 to the transmission of Reelin signaling. Brain Res. 1304: 26-37. https://doi.org/10.1016/j.brainres.2009.09.087
  9. Jung KJ, Lee EK, Yu BP, Chung HY. 2009. Significance of protein tyrosine kinase/protein tyrosine phosphatase balance in the regulation of NF-kappa B signaling in the inflammatory process and aging. Free Radic. Biol. Med. 47: 983-991. https://doi.org/10.1016/j.freeradbiomed.2009.07.009
  10. Ten Eyck LF, Taylor SS, Kornev AP. 2008. Conserved spatial patterns across the protein kinase family. Biochim. Biophys. Acta 1784: 238-243. https://doi.org/10.1016/j.bbapap.2007.11.002
  11. Lin JS, Lu CW, Huang CJ, Wu PF, Robinson D, Kung HJ, et al. 1998. Protein-tyrosine kinase and protein-serine/ threonine kinase expression in human gastric cancer cell lines. J. Biomed. Sci. 5: 101-110. https://doi.org/10.1007/BF02258363
  12. Cousin C, Derouiche A, Shi L, Pagot Y, Poncet S, Mijakovic I. 2013. Protein-serine/threonine/tyrosine kinases in bacterial signaling and regulation. FEMS Microbiol. Lett. 346: 11-19. https://doi.org/10.1111/1574-6968.12189
  13. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, et al. 2004. Protein tyrosine phosphatases in the human genome. Cell 117: 699-711. https://doi.org/10.1016/j.cell.2004.05.018
  14. Musharraf A, Markschies N, Imhof D, Englert C. 2006. Structural requirements of substrates for the PTP domain of Eya proteins. J. Pept. Sci. 12: 174-174.
  15. Lazo JS, Aslan DC, Southwick EC, Cooley KA, Ducruet AP, Joo B, et al. 2001. Discovery and biological evaluation of a new family of potent inhibitors of the dual specificity protein phosphatase Cdc25. J. Med. Chem. 44: 4042-4049. https://doi.org/10.1021/jm0102046
  16. Hudaky P, Perczel A. 2005. Toward direct determination of conformations of protein building units from multidimensional NMR experiments. VI. Chemical shift analysis of his to gain 3D structure and protonation state information. J. Comput. Chem. 26: 1307-1317. https://doi.org/10.1002/jcc.20266
  17. Demers JP, Chevelkov V, Lange A. 2011. Progress in correlation spectroscopy at ultra-fast magic-angle spinning: basic building blocks and complex experiments for the study of protein structure and dynamics. Solid State Nucl. Magn. Reson. 40: 101-113. https://doi.org/10.1016/j.ssnmr.2011.07.002
  18. Zhu J, Cheng LP, Fang Q, Zhou ZH, Honig B. 2010. Building and refining protein models within cryo-electron microscopy density maps based on homology modeling and multiscale structure refinement. J. Mol. Biol. 397: 835-851. https://doi.org/10.1016/j.jmb.2010.01.041
  19. Seo JH, Lee GS, Kim J, Cho BK, Joo K, Lee J, Kim BG. 2009. Automatic protein structure prediction system enabling rapid and accurate model building for enzyme screening. Enzyme Microb. Technol. 45: 218-225. https://doi.org/10.1016/j.enzmictec.2009.05.010
  20. Tsai CJ, Ma B, Sham YY, Kumar S, Wolfson HJ, Nussinov R. 2001. A hierarchial, building-block-based computational scheme for protein structure prediction. IBM J. Res. Dev. 45: 513-523. https://doi.org/10.1147/rd.453.0513
  21. Ul-Haq Z, Saeed M, Halim SA, Khan W. 2015. 3D structure prediction of human beta 1-adrenergic receptor via threading-based homology modeling for implications in structure-based drug designing. PLoS One 10: e0122223. https://doi.org/10.1371/journal.pone.0122223
  22. Danishuddin M, Khan A, Faheem M, Kalaiarasan P, Baig MH, Subbarao N, Khan AU. 2014. Structure-based screening of inhibitors against KPC-2: designing potential drug candidates against multidrug-resistant bacteria. J. Biomol. Struct. Dyn. 32: 741-750. https://doi.org/10.1080/07391102.2013.789988
  23. Kesharwani RK, Singh DV, Misra K. 2013. Computationbased virtual screening for designing novel antimalarial drugs by targeting falcipain-III: a structure-based drug designing approach. J. Vector Dis. 50: 93-102.
  24. Somvanshi P, Seth PK. 2009. Targeting the peptide deformylase of Salmonella enterica for virtual screening and structure based drug designing. New Biotechnol. 25: S366.
  25. Balajee R, Dhanarajan MS. 2009. Mining the information for structure based drug designing by relational database management notion. E. J. Chem. 6: 1047-1054. https://doi.org/10.1155/2009/937528
  26. Ding HY, Zhang Y, Xu C, Hou DX, Li J, Zhang YJ, et al. 2014. Norathyriol reverses obesity- and high-fat-dietinduced insulin resistance in mice through inhibition of PTP1B. Diabetologia 57: 2145-2154. https://doi.org/10.1007/s00125-014-3315-8
  27. Vercauteren M, Gomez E, Hooft R, Bombrun A, Mulder P, Thuillez C, Richard V. 2008. PTP1B: a new target for the treatment of the endothelial dysfunction in obesity and diabetes. J. Hypertens. 26: S367.
  28. Nguyen PH, Zhao BT, Ali MY, Choi JS, Rhyu DY, Min BS, Woo MH. 2015. Insulin-mimetic selaginellins from Selaginella tamariscina with protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. J. Nat. Prod. 78: 34-42. https://doi.org/10.1021/np5005856
  29. Tonks N K, M uth uswamy S K. 2007. A brake becomes an accelerator: PTP1B - a new therapeutic target for breast cancer. Cancer Cell 11: 214-216. https://doi.org/10.1016/j.ccr.2007.02.022
  30. Cortesio CL, Chan KT, Perrin BJ, Burton NO, Zhang S, Zhang ZY, Huttenlocher A. 2008. Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion. J. Cell Biol. 180: 957-971. https://doi.org/10.1083/jcb.200708048
  31. Oishi K, Tartaglia M, Lieb ME, Pick L, Gelb BD. 2004. Noonan syndrome-causative gain-of-function mutations in PTPN11 result in wing abnormalities and embryonic lethality in Drosophila. Pediatr. Res. 55: 270a.
  32. Zhang XC, Lavoie G, Fort L, Huttlin EL, Tcherkezian J, Galan JA, et al. 2013. Gab2 phosphorylation by RSK inhibits Shp2 recruitment and cell motility. Mol. Cell. Biol. 33: 1657-1670. https://doi.org/10.1128/MCB.01353-12
  33. Bentires-Alj M, Paez JG, David FS, Keilhack H, Halmos B, Naoki K, et al. 2004. Activating mutations of the Noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res. 64: 8816-8820. https://doi.org/10.1158/0008-5472.CAN-04-1923
  34. Cazzaniga G, Martinelli S, den Boer ML, Corral L, Spinelli M, Basso G, et al. 2004. PTPN11 and RAS gene mutation pattern identifies an unique feature of upregulated RAS function in infant ALL. Blood 104: 996.
  35. Gui Q, Zhang X, Xu L, Cheng HQ, Ke YH. 2013. Disruption of Shp2 tyrosine phosphatase promotes Hes1/ Stat3 complex in intestinal epithelia, contributing to enhanced self-renewal capacity and impaired differentiation in the crypt niche. FASEB J. 27: S1159.1.
  36. Kontaridis. 2008. Deletion of Ptpn11 (Shp2) in cardiomyocytes causes dilated cardiomyopathy via effects on the extracellular signal-regulated kinase/mitogen-activated protein kinase and RhoA signaling pathways. Circulation 117: 1423-1435. https://doi.org/10.1161/CIRCULATIONAHA.107.728865
  37. Bard-Chapeau EA, Li SW, Ding J, Zhang SS, Zhu HH, Princen F, et al. 2011. Ptpn11/Sh p2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer Cell 19: 629-639. https://doi.org/10.1016/j.ccr.2011.03.023
  38. Song YS, Lee HJ, Prosselkov P, Itohara S, Kim E. 2013. Trans-induced cis interaction in the tripartite NGL-1, netrin-G1 and LAR adhesion complex promotes development of excitatory synapses. J. Cell Sci. 126: 4926-4938. https://doi.org/10.1242/jcs.129718
  39. Takahashi H, Craig AM. 2013. Protein tyrosine phosphatases PTP delta, PTP sigma, and LAR: presynaptic hubs for synapse organization. Trends Neurosci. 36: 522-534. https://doi.org/10.1016/j.tins.2013.06.002
  40. Faux C, Hawadle M, Nixon J, Wallace A, Lee S, Murray S, Stoker A. 2007. PTP s igma b inds a nd d eph osphorylates neurotrophin receptors and can suppress NGF-dependent neurite outgrowth from sensory neurons. Biochim. Biophys. Acta 1773: 1689-1700. https://doi.org/10.1016/j.bbamcr.2007.06.008
  41. Takahashi H, Arstikaitis P, Prasad T, Bartlett TE, Wang YT, Murphy TH, Craig AM. 2011. Postsynaptic TrkC and presynaptic PTP sigma function as a bidirectional excitatory synaptic organizing complex. Neuron 69: 287-303. https://doi.org/10.1016/j.neuron.2010.12.024
  42. Horvat-Broecker A, Reinhard J, Illes S, Paech T, Zoidl G, Harroch S, et al. 2008. Receptor protein tyrosine phosphatases are expressed by cycling retinal progenitor cells and involved in neuronal development of mouse retina. Neuroscience 152: 618-645. https://doi.org/10.1016/j.neuroscience.2008.01.016
  43. Chagnon MJ, Wu CL, Nakazawa T, Yamamoto T, Noda M, Blanchetot C, Tremblay ML. 2010. Receptor tyrosine phosphatase sigma (RPTP sigma) regulates, p250GAP, a novel substrate that attenuates Rac signaling. Cell. Signal. 22: 1626-1633. https://doi.org/10.1016/j.cellsig.2010.06.001
  44. Lang BT, Cregg JM, DePaul MA, Tran AP, Xu K, Dyck SM, et al. 2015. Modulation of the proteoglycan receptor PTP sigma promotes recovery after spinal cord injury. Nature 518: 404-408. https://doi.org/10.1038/nature13974
  45. Bulavin DV, Higashimoto Y, Demidenko ZN, Meek S, Graves P, Phillips C, et al. 2003. Dual phosph orylation controls Cdc25 phosphatases and mitotic entry. Nat. Cell Biol. 5: 545-551. https://doi.org/10.1038/ncb994
  46. Davezac N, Ducommun B, Baldin V. 2000. Involvment of CDC25 phosphatases in growth control. Pathol. Biol. 48: 182-189.
  47. Draetta G, Donzelli M, Squatrito M, Ganoth D, Hershko A, Pagano M. 2002. CDC25 phosphatases and checkpoint controls. Eur. J. Cancer 38: S116.
  48. Vincent I, Bu B, Hudson K, Husseman J, Nochlin D, Jin LW. 2001. Constitutive Cdc25B tyrosine phosphatase activity in adult brain neurons with M phase-type alterations in Alzheimer's disease. Neuroscience 105: 639-650. https://doi.org/10.1016/S0306-4522(01)00219-6
  49. Astuti P, Pike T, Widberg C, Payne E, Harding A, Hancock J, Gabrielli B. 2009. MAPK pathway activation delays G(2)/M progression by destabilizing Cdc25B. J. Biol. Chem. 284: 33781-33788. https://doi.org/10.1074/jbc.M109.027516
  50. Geetha N, Mihaly J, Stockenhuber A, Blasi F, Uhrin P, Binder BR, et al. 2011. Signal integration and coincidence detection in the mitogen-activated protein kinase/ extracellular signal-regulated kinase (ERK) cascade: concomitant activation of receptor tyrosine kinases and of LRP-1 leads to sustained ERK phosphorylation via downregulation of dual specificity phosphatases (DUSP1 and -6). J. Biol. Chem. 286: 25663-25674. https://doi.org/10.1074/jbc.M111.221903
  51. Khor GH, Froemming GRA, Zain RB, Abraham MT, Omar E, Tan SK, et al. 2013. DNA methylation profiling revealed promoter hypermethylation-induced silencing of p16, DDAH2 and DUSP1 in primary oral squamous cell carcinoma. Int. J. Med. Sci. 10: 1727-1739.
  52. Moncho-Amor V, de Caceres II, Bandres E, Martinez- Poveda B, Orgaz JL, Sanchez-Perez I, et al. 2011. DUSP1/ MKP1 promotes angiogenesis, invasion and metastasis in non-small-cell lung cancer. Oncogene 30: 668-678. https://doi.org/10.1038/onc.2010.449
  53. Amor VM, de Caceres I, Bandres E, Orgaz JL, Sanchez- Perez I, Cuenca BJ, et al. 2008. Identification of DUSP1/ MKP1 mediated pathways in lung cancer progression. EJC Suppl. 6: 69-70.
  54. Innocenti F, Sette M, Forte E, Lo Surdo P, Cerretani M, Altamura S, et al. 2004. PRL-3, a phosphatase implied in cancer metastasis: structure and function. Protein Sci. 13:127.
  55. Al-Aidaroos AQO, Zeng Q. 2010. PRL-3 phosphatase and cancer metastasis. J. Cell. Biochem. 111: 1087-1098. https://doi.org/10.1002/jcb.22913
  56. Zh ang J, X iao Z, L ai D , Sun J , He C , Chu Z, et al. 2012. miR-21, miR-17 and miR-19a induced by phosphatase of regenerating liver-3 promote the proliferation and metastasis of colon cancer. Br. J. Cancer 107: 352-359. https://doi.org/10.1038/bjc.2012.251
  57. Tamagawa H, Oshima T, Yoshihara K, Watanabe T, Numata M, Yamamoto N, et al. 2012. The expression of the phosphatase regenerating liver 3 gene is associated with outcome in patients with colorectal cancer. Hepatogastroenterology 59: 2122-2126.
  58. Hinds PW. 2008. Too much of a good thing: the Prl-3 in p53's oyster. Mol. Cell 30: 260-261. https://doi.org/10.1016/j.molcel.2008.04.006
  59. Kim KA, Song JS, Jee JG, Sheen MR, Lee C, Lee TG, et al. 2004. Structure of human PRL-3, the phosphatase associated with cancer metastasis. FEBS Lett. 565: 181-187. https://doi.org/10.1016/j.febslet.2004.03.062
  60. Bardelli A, Saha S, Sager J A, Romans KE, X in BZ, Markowitz SD, et al. 2003. PRL-3 expression in metastatic cancers. Clin. Cancer Res. 9: 5607-5615.
  61. Monteiro-Cardoso VF, Oliveira MM, Melo T, Domingues MRM, Moreira PI, Ferreiro E, et al. 2015. Cardiolipin profile changes are associated to the early synaptic mitochondrial dysfunction in Alzheimer's disease. J. Alzheimers Dis. 43: 1375-1392.
  62. Claypool SM, Koehler CM. 2012. The complexity of cardiolipin in health and disease. Trends Biochem. Sci. 37: 32-41. https://doi.org/10.1016/j.tibs.2011.09.003
  63. Chicco AJ, Sparagna GC. 2007. Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am. J. Physiol. Cell Physiol. 292: C33-C44. https://doi.org/10.1152/ajpcell.00243.2006
  64. Niemi NM, Lanning NJ, Westrate LM, MacKeigan JP. 2013. Downregulation of the mitochondrial phosphatase PTPMT1 is sufficient to promote cancer cell death. PLoS One 8: e53803. https://doi.org/10.1371/journal.pone.0053803
  65. El-Kouhen K, Tremblay ML. 2011. PTPMT1: connecting cardiolipin biosynthesis to mitochondrial function. Cell Metab. 13: 615-617. https://doi.org/10.1016/j.cmet.2011.05.005
  66. Xiao JY, Engel JL, Zhang J, Chen MJ, Manning G, Dixon JE. 2011. Structural and functional analysis of PTPMT1, a phosphatase required for cardiolipin synthesis. Proc. Natl. Acad. Sci. USA 108: 11860-11865. https://doi.org/10.1073/pnas.1109290108
  67. Park H, Kim SY, Kyung A, Yoon TS, Ryu SE, Jeong DG. 2012. Structure-based virtual screening approach to the discovery of novel PTPMT1 phosphatase inhibitors. Bioorg. Med. Chem. Lett. 22: 1271-1275. https://doi.org/10.1016/j.bmcl.2011.10.083
  68. Nath AK, Ryu JH, J in YN, Roberts LD, Dejam A, Gerszten RE, Peterson RT. 2015. PTPMT1 inhibition lowers glucose through succinate dehydrogenase phosphorylation. Cell Rep. 10: 694-701. https://doi.org/10.1016/j.celrep.2015.01.010
  69. Wang W, Liu LJ, Song X, Mo Y, Komma C, Bellamy HD, et al. 2011. Crystal structure of human protein tyrosine phosphatase SHP-1 in the open conformation. J. Cell. Biochem. 112: 2062-2071. https://doi.org/10.1002/jcb.23125
  70. Xiao P, Wang X, Wang HM, Fu XL, Cui FA, Yu X, et al. 2014. The second-sphere residue T263 is important for the function and catalytic activity of PTP1B via interaction with the WPD-loop. Int. J. Biochem. Cell. Biol. 57: 84-95. https://doi.org/10.1016/j.biocel.2014.10.004
  71. Yang J, Niu TQ, Zhang AH, Mishra AK, Zhao ZZJ, Zhou GW. 2002. Relation between the flexibility of the WPD loop and the activity of the catalytic domain of protein tyrosine phosphatase SHP-1. J. Cell. Biochem. 84: 47-55. https://doi.org/10.1002/jcb.1265
  72. Ren LG, Chen XW, Luechapanichkul R, Selner NG, Meyer TM, Wavreille AS, et al. 2011. Substrate specificity of protein tyrosine phosphatases 1B, RPTP alpha, SHP-1, and SHP-2. Biochemistry 50: 2339-2356. https://doi.org/10.1021/bi1014453
  73. Peti W, Page R. 2015. Strategies to make protein serine/ threonine (PP1, calcineurin) and tyrosine phosphatases (PTP1B) druggable: achieving specificity by targeting substrate and regulatory protein interaction sites. Bioorgan. Med. Chem. 23: 2781-2785. https://doi.org/10.1016/j.bmc.2015.02.040
  74. Asthagiri D, Liu TQ, Noodleman L, Van Etten RL, Bashfordt D. 2004. On the role of the conserved aspartate in the hydrolysis of the phosphocysteine intermediate of the low molecular weight tyrosine phosphatase. J. Am. Chem. Soc. 126: 12677-12684. https://doi.org/10.1021/ja048638o
  75. Gruninger RJ, Selinger LB, Mosimann SC. 2008. Effect of ionic strength and oxidation on the P-loop conformation of the protein tyrosine phosphatase-like phytase, PhyAsr. FEBS J. 275: 3783-3792. https://doi.org/10.1111/j.1742-4658.2008.06524.x
  76. van Montfort RLM, Congreve M, Tisi D, Carr R, Jhoti H. 2003. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423: 773-777. https://doi.org/10.1038/nature01681
  77. Chen Y Y, Chu HM, Pan KT, Teng CH, Wang D L, W ang AHJ, et al. 2008. Cysteine S-nitrosylation protects proteintyrosine phosphatase 1B against oxidation-induced permanent inactivation. J. Biol. Chem. 283: 35265-35272. https://doi.org/10.1074/jbc.M805287200
  78. Ozkaral B, Ozkan A, Alakent B, Ozkirimli E. 2010. Dynamic analysis of phosphatase 1B WPD loop. Biophys. J. 98: 440a.
  79. Critton DA, Tautz L, Page R. 2011. Visualizing active-site dynamics in single crystals of HePTP: opening of the WPD loop involves coordinated movement of the E loop. J. Mol. Biol. 405: 619-629. https://doi.org/10.1016/j.jmb.2010.11.020
  80. Brandao TAS, Johnson SJ, Hengge AC. 2012. The molecular details of WPD-loop movement differ in the proteintyrosine phosphatases YopH and PTP1B. Arch. Biochem. Biophys. 525: 53-59. https://doi.org/10.1016/j.abb.2012.06.002
  81. Sheriff S, Beno BR, Zhai WX, Kostich WA, McDonnell PA, Kish K, et al. 2011. Small molecule receptor protein tyrosine phosphatase gamma (RPTP gamma) ligands that inhibit phosphatase activity via perturbation of the tryptophan-proline-aspartate (WPD) loop. J. Med. Chem. 54: 6548-6562. https://doi.org/10.1021/jm2003766
  82. Tailor P, Gilman J, Williams S, Mustelin T. 1999. A novel isoform of the low molecular weight phosphotyrosine phosphatase, LMPTP-C, arising from alternative mRNA splicing. Eur. J. Biochem. 262: 277-282. https://doi.org/10.1046/j.1432-1327.1999.00353.x
  83. Dong O, Heul AV, Welsh MJ, Randak CO. 2012. The conserved Q-loop glutamine 1291 interacts with Ap(5)A. Pediatr. Pulm. 47: 240. https://doi.org/10.1002/ppul.21545
  84. Ananthaswamy N, Rutledge R, Sauna ZE, Ambudkar SV, Dine E, Nelson E, et al. 2010. The signaling interface of the yeast multidrug transporter Pdr5 adopts a cis conformation, and there are functional overlap and equivalence of the deviant and canonical Q-loop residues. Biochemistry 49: 4440-4449. https://doi.org/10.1021/bi100394j
  85. Wei RR, Rich ardson JP. 2001. Mutational changes of conserved residues in the Q-loop region of transcription factor Rho greatly reduce secondary site RNA-binding. J. Mol. Biol. 314: 1007-1015. https://doi.org/10.1006/jmbi.2000.5207
  86. Martell KJ, Angelotti T, Ullrich A. 1998. The "VH1-like" dual-specificity protein tyrosine phosphatases. Mol. Cells 8: 2-11.
  87. Sharma B, Kaushik N, Upadhyay A, Tripathi S, Singh K, Pandey VN. 2003. A positively charged side chain at position 154 on the beta 8-alpha E loop of HIV-1 RT is required for stable ternary complex formation. Nucleic Acids Res. 31: 5167-5174. https://doi.org/10.1093/nar/gkg708
  88. Feng Y, Hadjikyriacou A, Clarke SG. 2014. Substrate specificity of human protein arginine methyltransferase 7 (PRMT7) the importance of acidic residues in the double E loop. J. Biol. Chem. 289: 32604-32616. https://doi.org/10.1074/jbc.M114.609271
  89. Singh M, Satoh K. 2003. Site-specific mutations localized in the D-E loop of the D1 protein of photosystem II affect phototolerance in Synechocystis sp. PCC 6803 containing psbAII gene. Ind. J. Biochem. Bio. 40: 108-113.
  90. Saito H. 2004. Structure and function of protein tyrosine phosphatases. J. Pharmacol. Sci. 94: 14.
  91. Scott LM, Lawrence HR, Sebti SM, Lawrence NJ, Wu J. 2010. Targeting protein tyrosine phosphatases for anticancer drug discovery. Curr. Pharm. Design 16: 1843-1862. https://doi.org/10.2174/138161210791209027
  92. DeGnore JP, Konig S, Barrett WC, Chock PB, Fales HM. 1998. Identification of the oxidation states of the active site cysteine in a recombinant protein tyrosine phosphatase by electrospray mass spectrometry using on-line desalting. Rapid Commun. Mass Spectrom. 12: 1457-1462. https://doi.org/10.1002/(SICI)1097-0231(19981030)12:20<1457::AID-RCM346>3.0.CO;2-A
  93. Tonks NK. 1998. From structure to function of protein tyrosine phosphatases. Naunyn Schmiedebergs Arch. Pharmacol. 358: R377.
  94. Lee H, Yi JS, Lawan A, Min K, Bennett AM. 2015. Mining the function of protein tyrosine phosphatases in health and disease. Semin. Cell Dev. Biol. 37: 66-72. https://doi.org/10.1016/j.semcdb.2014.09.021
  95. Zhang ZY. 1998. Protein-tyrosine phosphatases: biological function, structural characteristics, and mechanism of catalysis. Crit. Rev. Biochem. Mol. Biol. 33: 1-52. https://doi.org/10.1080/10409239891204161
  96. Stockman BJ. 1998. NMR spectroscopy as a tool for structure-based drug design. Prog. Nucl. Magn. Reson. Spectrosc. 33: 109-151. https://doi.org/10.1016/S0079-6565(98)00020-X
  97. Stafford JA. 2003. Use of high-throughput nanovolume crystallization in structure-based drug design. Abstr. Pap. Am. Chem. Soc. 226: U460-U461.
  98. Sotriffer C, Klebe G. 2002. Identification and mapping of small-molecule binding sites in proteins: computational tools for structure-based drug design. Farmaco 57: 243-251. https://doi.org/10.1016/S0014-827X(02)01211-9
  99. Park H, Chien PN, Ryu SE. 2012. Discovery of potent inhibitors of receptor protein tyrosine phosphatase sigma through the structure-based virtual screening. Bioorg. Med. Chem. Lett. 22: 6333-6337. https://doi.org/10.1016/j.bmcl.2012.08.081
  100. Sarvagalla S, Cheung CHA, Tsai JY, Hsieh HP, Coumar MS. 2016. Disruption of protein-protein interactions: hot spot detection, structure-based virtual screening and in vitro testing for the anti-cancer drug target survivin. RSC Adv. 6: 31947-31959. https://doi.org/10.1039/C5RA22927H
  101. Proschak E, Rupp M, Derksen S, Schneider G. 2008. Shapelets: possibilities and limitations of shape-based virtual screening. J. Comput. Chem. 29: 108-114. https://doi.org/10.1002/jcc.20770
  102. Guerreiro PS, Estacio SG, Antunes F, Fernandes AS, Pinh eiro PF, Costa JG, et al. 2016. Structure-based virtual screening toward the discovery of novel inhibitors of the DNA repair activity of the human apurinic/apyrimidinic endonuclease 1. Chem. Biol. Drug Design 88: 915-925. https://doi.org/10.1111/cbdd.12826
  103. Hou XB, Li KS, Yu X, Sun JP, Fang H. 2015. Protein flexibility in docking-based virtual screening: discovery of novel lymphoid-specific tyrosine phosphatase inhibitors using multiple crystal structures. J. Chem. Inf. Model. 55: 1973-1983. https://doi.org/10.1021/acs.jcim.5b00344
  104. Zhang ZY. 2002. Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu. Rev. Pharmacol. Toxicol. 42: 209-234. https://doi.org/10.1146/annurev.pharmtox.42.083001.144616
  105. de Beer TAP, Berka K, Thornton JM, Laskowski RA. 2014. PDBsum additions. Nucleic Acids Res. 42: D292-D296. https://doi.org/10.1093/nar/gkt940
  106. Gopalakrishnan K, Sowmiya G, Sheik SS, Sekar K. 2007. Ramachandran plot on the web (2.0). Protein Pept. Lett. 14: 669-671. https://doi.org/10.2174/092986607781483912
  107. Ye Z, Kadolph C, Strenn R, Wall D, McPherson E, Lin S. 2016. WHATIF: an open-source desktop application for extraction and management of the incidental findings from next-generation sequencing variant data. Comput. Biol. Med. 68: 165-169. https://doi.org/10.1016/j.compbiomed.2015.03.028
  108. Zhang YM, Zhang DF, Tian HZ, Jiao Y, Shi ZH, Ran T, et al. 2016. Identification of covalent binding sites targeting cysteines based on computational approaches. Mol. Pharm. 13: 3106-3118. https://doi.org/10.1021/acs.molpharmaceut.6b00302
  109. Tonks NK. 2013. Protein tyrosine phosphatases - from housekeeping enzymes to master regulators of signal transduction. FEBS J. 280: 346-378. https://doi.org/10.1111/febs.12077
  110. Seco J, Luque FJ, Barril X. 2009. Binding site detection and druggability index from first principles. J. Med. Chem. 52: 2363-2371. https://doi.org/10.1021/jm801385d
  111. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. 2006. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34: W116-W118. https://doi.org/10.1093/nar/gkl282
  112. Huang BD. 2009. MetaPocket: a meta approach to improve protein ligand binding site prediction. Omics 13: 325-330. https://doi.org/10.1089/omi.2009.0045
  113. Laurie ATR, Jackson RM. 2005. Q-SiteFinder: an energybased method for the prediction of protein-ligand binding sites. Bioinformatics 21: 1908-1916. https://doi.org/10.1093/bioinformatics/bti315
  114. Nogara PA, Saraiva RD, Bueno DC, Lissner LJ, Dalla Corte CL, Braga MM, et al. 2015. Virtual screening of acetylcholinesterase inhibitors using the Lipinski's rule of five and zinc databank. Biomed. Res. Int. 2015: 870389.
  115. Irwin JJ, Sh oichet BK. 2005. ZINC - a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45: 177-182. https://doi.org/10.1021/ci049714+
  116. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. 2006. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34: D668-D672. https://doi.org/10.1093/nar/gkj067
  117. Congreve M, Carr R, Murray C, Jhoti H. 2003. A rule of three for fragment-based lead discovery? Drug Discov. Today 8: 876-877.
  118. Black E, Breed J, Breeze AL, Embrey K, Garcia R, Gero TW, et al. 2005. Structure-based design of protein tyrosine phosphatase-1B inhibitors. Bioorg. Med. Chem. Lett. 15: 2503-2507. https://doi.org/10.1016/j.bmcl.2005.03.068
  119. Lim-Wilby M, Srinivasan J, Koska J, Krammer A, Venkatachalam CM, Waldman M. 2004. Automated de novo design with LUDI, minimizer, QSAR, and scoring functions: development and validation of autoLUDI. Abstr. Pap. Am. Chem. Soc. 228: U509.
  120. Yuan YX, Pei JF, Lai LH. 2011. LigBuilder 2: a practical de novo drug design approach. J. Chem. Inf. Model. 51: 1083- 1091. https://doi.org/10.1021/ci100350u
  121. Bajusz D, Ferenczy GG, Keseru GM. 2015. Property-based characterization of kinase-like ligand space for library design and virtual screening. Medchemcomm 6: 1898-1904. https://doi.org/10.1039/C5MD00253B
  122. Osterberg F, Morris GM, Sanner MF, Olson AJ, Goodsell DS. 2002. Automated docking to multiple target structures: Incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins 46: 34-40. https://doi.org/10.1002/prot.10028
  123. Cheney DL, Langley DR, Mueller L. 2004. Protein ensemble-based lead docking: a comparison of FLO, GLIDE, GOLD and ICM in cross docking scenarios. Abstr. Pap. Am. Chem. Soc. 227: U1029.
  124. Park H, Bhattarai BR, Ham SW, Cho H. 2009. Structurebased virtual screening approach to identify novel classes of PTP1B inhibitors. Eur. J. Med. Chem. 44: 3280-3284. https://doi.org/10.1016/j.ejmech.2009.02.011
  125. Barradas D, Fernandez-Recio J. 2015. A comprehensive analysis of scoring functions for protein-protein docking. Protein Sci. 24: 250-251.
  126. Hsieh JH, Yin SY, Wang XS, Liu SB, Dokholyan NV, Tropsha A. 2010. Cheminformatics meets molecular mechanics: a combined application of knowledge-based pose scoring and physical force field-based hit scoring functions improves the accuracy of virtual screening. J. Chem. Inf. Model. 52: 16-28.
  127. Yin S, Biedermannova L, Vondrasek J, Dokholyan NV. 2008. MedusaScore: an accurate force field-based scoring function for virtual drug screening. J. Chem. Inf. Model. 48: 1656-1662. https://doi.org/10.1021/ci8001167
  128. Li GB, Yang LL, Wang WJ, Li LL, Yang SY. 2013. ID-Score: a new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions. J. Chem. Inf. Model. 53: 592-600. https://doi.org/10.1021/ci300493w
  129. Geng YX, Zhang LY, Sun YS, Zhang Y, Yang N, Wu JW. 2016. Research on ant colony algorithm optimization neural network weights blind equalization algorithm. Int. J. Secur. Appl. 10: 95-104.
  130. Korb O, Stutzle T, Exner TE. 2009. Empirical scoring functions for advanced protein-ligand docking with plants. J. Chem. Inf. Model. 49: 84-96. https://doi.org/10.1021/ci800298z
  131. Lizunov AY, Gonchar AL, Zaitseva NI, Zosimov VV. 2015. Accounting for intraligand interactions in flexible ligand docking with a PMF-based scoring function. J. Chem. Inf. Model. 55: 2121-2137. https://doi.org/10.1021/acs.jcim.5b00158
  132. Kruger D M, G arzon JI, Ch acon P , Gohlke H. 2014. DrugScore(PPI) knowledge-based potentials used as scoring and objective function in protein-protein docking. PLoS One 9: e89466. https://doi.org/10.1371/journal.pone.0089466
  133. Ashtawy H M, Mahapatra NR. 2015. Mach ine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins. BMC Bioinform. 16 Suppl 6: S3.
  134. Ain QU, Aleksandrova A, Roessler FD, Ballester PJ. 2015. Machine-learning scoring functions to improve structurebased binding affinity prediction and virtual screening. WIREs Comput. Mol. Sci. 5: 405-424. https://doi.org/10.1002/wcms.1225
  135. Zhang W, Li RB, Shin R, Wang YM, Padmalayam I, Zhai L, Krishna NR. 2013. Identification of the binding site of an allosteric ligand using STD-NMR, docking, and CORCEMAST calculations. Chemmedchem 8: 1629-1633.
  136. Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, et al. 2001. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol. Cell. Biol. 21: 7117-7136. https://doi.org/10.1128/MCB.21.21.7117-7136.2001
  137. Rettenmaier TJ, Sadowsky JD, Thomsen ND, Chen SC, Doak AK, Arkin MR, Wells JA. 2014. A small-molecule mimic of a peptide docking motif inhibits the protein kinase PDK1. Proc. Natl. Acad. Sci. USA 111: 18590-18595. https://doi.org/10.1073/pnas.1415365112
  138. Lee JY, Jung KW, Woo ER, Kim Y. 2008. Docking study of biflavonoids, allosteric inhibitors of protein tyrosine phosphatase 1B. Bull. Korean Chem. Soc. 29: 1479-1484. https://doi.org/10.5012/bkcs.2008.29.8.1479
  139. Hansen SK, Cancilla MT, Shiau TP, Kung J, Chen T, Erlanson DA. 2005. Allosteric inhibition of PTP1B activity by selective modification of a non-active site cysteine residue. Biochemistry 44: 7704-7712. https://doi.org/10.1021/bi047417s
  140. Perron MD, Chowdhury S, Aubry I, Purisima E, Tremblay ML, Saragovi HU. 2014. Allosteric noncompetitive small molecule selective inhibitors of CD45 tyrosine phosphatase suppress T-cell receptor signals and inflammation in vivo. Mol. Pharmacol. 85: 553-563. https://doi.org/10.1124/mol.113.089847
  141. Zinker B, Xie N, Clampit J, Nguyen P, Wilcox D, Jacobson P, et al. 2001. Anti-diabetic effects of protein tyrosine phosphatase 1B (PTP1B) antisense treatment in a rodent model of diabetes: potential therapeutic benefit. Diabetes 50: A332.
  142. Ostensen CG, Sandberg-Nordqvist AC, Chen J, Hallbrink M, Rotin D, Langel U, Efendic S. 2002. Overexpression of protein-tyrosine phosphatase PTP sigma is linked to impaired glucose-induced insulin secretion in hereditary diabetic Goto-Kakizaki rats. Biochem. Biophys. Res. Commun. 291: 945-950. https://doi.org/10.1006/bbrc.2002.6536
  143. Lauriol J, Jaffre F, Kontaridis MI. 2015. The role of the protein tyrosine phosphatase SHP2 in cardiac development and disease. Semin. Cell Dev. Biol. 37: 73-81. https://doi.org/10.1016/j.semcdb.2014.09.013
  144. Hashimoto Y, Kohri K, Tsai MJ. 2003. Overexpression of Cdc25B, an androgen-receptor coactivator, in human prostate cancer. J. Urol. 169: 84-85.
  145. Wang Z , Cai SR, He YL, Z h an WH, Z hang CH, Wu H , et al. 2009. Elevated PRL-3 expression was more frequently detected in the large primary gastric cancer and exhibits a poor prognostic impact on the patients. J. Cancer Res. Clin. Oncol. 135: 1041-1046. https://doi.org/10.1007/s00432-008-0541-9
  146. Krishnan N, Koveal D, Miller DH, Xue B , Aksh inthala SD, Kragelj J, et al. 2014. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat. Chem. Biol. 10: 558-566. https://doi.org/10.1038/nchembio.1528
  147. Chen LW, Sung SS, Yip MLR, Lawrence HR, Ren Y, Guida WC, et al. 2006. Discovery of a novel Shp2 protein tyrosine phosphatase inhibitor. Mol. Pharmacol. 70: 562-570. https://doi.org/10.1124/mol.106.025536
  148. Chio CM, Lim CS, Bishop AC. 2015. Targeting a cryptic allosteric site for selective inhibition of the oncogenic protein tyrosine phosphatase Shp2. Biochemistry 54: 497-504. https://doi.org/10.1021/bi5013595
  149. Martin KR, Narang P, Xu Y, Kauffman AL, Petit J, Xu HE, et al. 2012. Identification of small molecule inhibitors of PTPs through an integrative virtual and biochemical approach. PLoS One 7: e50217. https://doi.org/10.1371/journal.pone.0050217
  150. Lazo J S, A slan DC, S outh wick EC, Cooley K A, D ucruet AP, Joo B, et al. 2001. Discovery and biological evaluation of a new family of potent inhibitors of the dual specificity protein phosphatase Cdc25. J. Med. Chem. 44: 4042-4049. https://doi.org/10.1021/jm0102046
  151. Vogt A, Tamewitz A, Skoko J, Sikorski RP, Giuliano KA, Lazo JS. 2005. The benzo[c] phenanthridine alkaloid, sanguinarine, is a selective, cell-active inhibitor of mitogenactivated protein kinase phosphatase-1. J. Biol. Chem. 280: 19078-19086. https://doi.org/10.1074/jbc.M501467200
  152. Ahn JH, Kim SJ, Park WS, Cho SY, Ha JD, Kim SS, et al. 2006. Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors. Bioorg. Med. Chem. Lett. 16: 2996-2999. https://doi.org/10.1016/j.bmcl.2006.02.060
  153. Doughty-Shenton D, Joseph JD, Zhang J, Pagliarini DJ, Kim Y, Lu DH, et al. 2010. Pharmacological targeting of the mitochondrial phosphatase PTPMT1. J. Pharmacol. Exp. Ther. 333: 584-592. https://doi.org/10.1124/jpet.109.163329
  154. Musumeci L, Kuijpers MJ, Gilio K, Hego A, Theatre E, Maurissen L, et al. 2015. Dual-specificity phosphatase 3 deficiency or inhibition limits platelet activation and arterial thrombosis. Circulation 131: 656-668. https://doi.org/10.1161/CIRCULATIONAHA.114.010186
  155. Molina G, Vogt A, Bakan A, Dai WX, de Oliveira PQ, Znosko W, et al. 2009. Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nat. Chem. Biol. 5: 680-687. https://doi.org/10.1038/nchembio.190
  156. Urbanek RA, Suchard SJ, Steelman GB, Knappenberger KS, Sygowski LA, Veale CA, Chapdelaine MJ. 2001. Potent reversible inhibitors of the protein tyrosine phosphatase CD45. J. Med. Chem. 44: 1777-1793. https://doi.org/10.1021/jm000447i

Cited by

  1. New Approaches to Difficult Drug Targets: The Phosphatase Story vol.22, pp.9, 2017, https://doi.org/10.1177/2472555217721142
  2. Inhibition of Oncogenic Kinases: An In Vitro Validated Computational Approach Identified Potential Multi-Target Anticancer Compounds vol.9, pp.4, 2019, https://doi.org/10.3390/biom9040124
  3. Targeting the C-Terminal Domain Small Phosphatase 1 vol.10, pp.5, 2017, https://doi.org/10.3390/life10050057
  4. A Library of Thiazolidin‐4‐one Derivatives as Protein Tyrosine Phosphatase 1B (PTP1B) Inhibitors: An Attempt To Discover Novel Antidiabetic Agents vol.15, pp.13, 2017, https://doi.org/10.1002/cmdc.202000055
  5. Identification of Phomoxanthone A and B as Protein Tyrosine Phosphatase Inhibitors vol.5, pp.40, 2017, https://doi.org/10.1021/acsomega.0c03315
  6. Emerging chemical scaffolds with potential SHP2 phosphatase inhibitory capabilities – A comprehensive review vol.97, pp.3, 2017, https://doi.org/10.1111/cbdd.13807
  7. Activation of Insulin Signaling by Botanical Products vol.22, pp.8, 2017, https://doi.org/10.3390/ijms22084193