Acknowledgement
Supported by : Research and Design Centre (CNIP)
References
- Anlas, G., Santare, M.H. and Lambros, J. (2000), "Numerical calculation of stress intensity factors in functionally graded materialsˮ, Int. J. Fract., 104(1), 131-143. https://doi.org/10.1023/A:1007652711735
- Bohidar, S.K., Sharma, R. and Mishra, P.R. (2014), "Functionally graded materials: a critical reviewˮ, Int. J. Res., 1(7), 289-301.
- Carpinteri, A. and Pugno, N. (2006), "Cracks in re-entrant corners in functionally graded materialsˮ, Eng. Fract. Mech., 73(6), 1279-1291. https://doi.org/10.1016/j.engfracmech.2006.01.008
- Chakrabarty, J. (2006), Theory of Plasticity, Elsevier Butterworth-Heinemann, Oxford.
- Gasik, M.M. (2010), "Functionally graded materials: Bulk processing techniquesˮ, Int. J. Mater. Prod. Technol., 39(1-2), 20-29. https://doi.org/10.1504/IJMPT.2010.034257
- Hirai, T. and Chen, L. (1999), "Recent and prospective development of functionally graded materials in Japanˮ, Mater. Sci. Forum, 308-311(4), 509-514. https://doi.org/10.4028/www.scientific.net/MSF.308-311.509
- Ivanov, I. and Draganov, I. (2014), "Influence and simulation of laminated glass subjected to low-velocity impactˮ, Mech. Mach., 110, 89-94.
- Ivanov, V., Velchev, D.S., Georgiev, N.G., Ivanov, I.D. and Sadowski, T. (2016), "A plate finite element for modelling of triplex laminated glass and comparison with other computational modelsˮ, Meccan., 51(2), 341-358. https://doi.org/10.1007/s11012-015-0275-0
- Ivanov, Y. and Stoyanov, V. (2012), "High technologies and new construction materials in civil engineeringˮ, Proceedings of the 1st International Conference of the European Polytechnical University, Pernik, Bulgaria, June.
- Koizumi, M. (1993), "The concept of FGM ceramic transˮ, Function. Grad. Mater., 34(1), 3-10.
- Lubliner, J. (2006), Plasticity Theory, Revised Edition, University of California, Berkeley, U.S.A.
- Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Semi-analytical analysis for multi-dimensional functionally graded plates: 3-D elasticity solutionsˮ, Int. J. Num. Meth. Eng., 79(3), 25-44. https://doi.org/10.1002/nme.2555
- Markworth, A.J., Ramesh, K.S. and Parks, J.W.P. (1995), "Review: Modeling studies applied to functionally graded materialsˮ, J. Mater. Sci., 30(3), 2183-2193. https://doi.org/10.1007/BF01184560
- Nemat-Allal, M.M., Ata, M.H., Bayoumi, M.R. and Khair-Eldeen, W. (2011), "Powder metallurgical fabrication and microstructural investigations of aluminum/steel functionally graded materialˮ, Mater. Sci. Appl., 2(5), 1708-1718.
- Pei, G. and Asaro, R.J. (1997), "Cracks in functionally graded materialsˮ, Int. J. Sol. Struct., 34(1), 1-17. https://doi.org/10.1016/0020-7683(95)00289-8
- Petrov, V.V. (2014), Non-Linear Incremental Structural Mechanics, M.: Infra-Injeneria.
- Suresh, S. and Mortensen, A. (1998), Fundamentals of Functionally Graded Materials, IOM Communications Ltd., London, U.K.
- Szekrenyes, A. (2012), "J-integral for delaminated beam and plate modelsˮ, Period. Polytech. Mech. Eng., 56(1), 63-71. https://doi.org/10.3311/pp.me.2012-1.10
- Tilbrook, M.T., Moon, R.J. and Hoffman, M. (2005), "Crack propagation in graded compositesˮ, Compos. Sci. Technol., 65(2), 201-220. https://doi.org/10.1016/j.compscitech.2004.07.004
- Upadhyay, A.K. and Simha, K.R.Y. (2007), "Equivalent homogeneous variable depth beams for cracked FGM beams; compliance approachˮ, Int. J. Fract., 144(2), 209-213. https://doi.org/10.1007/s10704-007-9089-y
- Zhang, H., Li, X.F., Tang, G.J. and Shen, Z.B. (2013), "Stress intensity factors of double cantilever nanobeams via gradient elasticity theoryˮ, Eng. Fract. Mech., 105(1), 58-64. https://doi.org/10.1016/j.engfracmech.2013.03.005
Cited by
- Non-linear longitudinal fracture in a functionally graded beam vol.7, pp.4, 2017, https://doi.org/10.12989/csm.2018.7.4.441
- Non-linear elastic analysis of delamination in two-dimensional functionally graded multilayered beams vol.11, pp.4, 2017, https://doi.org/10.3233/sfc-180233