Acknowledgement
Supported by : Ministry of Science and Technology (MOST)
References
- Bhattacharya, K. (2003), "Microstructure of martensite: Why it forms and how it gives rise to the shapememory effect", Oxford University Press.
- Chadwick, P. (2012), "Continuum mechanics: Concise theory and problems", Courier Corporation.
- Eriksen, J. (1984), "The cauchy and born hypothesis for crystals", Phase Transformations and Material Instabilities in Solids, Academic Press.
- Finnis, M.W. and Sinclair, J.E. (1984), "A simple empirical N-body potential for transition-metals", Philos. Mag. a-Phys. Condens. Matt. Struct. Defect. Mech. Propert., 50(1), 45-55.
- Hane, K.F. and Shield, T. (1999), "Microstructure in the cubic to monoclinic transition in titanium-nickel shape memory alloys", Acta Mater., 47(9), 2603-2617. https://doi.org/10.1016/S1359-6454(99)00143-3
- Hane, K.F. and Shield, T.W. (1998), "Symmetry and microstructure in martensites", Philos. Mag. A, 78(6), 1215-1252. https://doi.org/10.1080/01418619808239984
- Kastner, O., Eggeler, G., Weiss, W. and Ackland, G.J. (2011), "Molecular dynamics simulation study of microstructure evolution during cyclic martensitic transformations", J. Mech. Phys. Sol., 59(9), 1888-1908. https://doi.org/10.1016/j.jmps.2011.05.009
- Knowles, K.M. and Smith, D.A. (1981), "The crystallography of the martensitic-transformation in equiatomic nickel-titanium", Acta Metall., 29(1), 101-110. https://doi.org/10.1016/0001-6160(81)90091-2
- Lai, W.S. and Liu, B.X. (2000), "Lattice stability of some Ni-Ti alloy phases versus their chemical composition and disordering", J. Phys. Condens. Matt., 12(5), L53-L60. https://doi.org/10.1088/0953-8984/12/5/101
- Mirzaeifar, R., Gall, K., Zhu, T., Yavari, A. and DesRoches, R. (2014), "Structural transformations in NiTi shape memory alloy nanowires", J. Appl. Phys., 115(19), 194307. https://doi.org/10.1063/1.4876715
- Saitoh, K.I., Sato, T. and Shinke, N. (2006), "Atomic dynamics and energetics of martensitic transformation in nickel-titanium shape memory alloy", Mater. Trans., 47(3), 742-749. https://doi.org/10.2320/matertrans.47.742
- Sato, T., Saitoh, K.I. and Shinke, N. (2006), "Molecular dynamics study on microscopic mechanism for phase transformation of Ni-Ti alloy", Model. Simulat. Mater. Sci. Eng., 14(5), S39. https://doi.org/10.1088/0965-0393/14/5/S05
- Shimizu, F., Ogata, S. and Li, J. (2007), "Theory of shear banding in metallic glasses and molecular dynamics calculations", Mater. Trans., 48(11), 2923-2927. https://doi.org/10.2320/matertrans.MJ200769
- Yang, L. and Dayal, K. (2010), "Formulation of phase-field energies for microstructure in complex crystal structures", Appl. Phys. Lett., 96(8), 081916. https://doi.org/10.1063/1.3319503
- Zhong, Y. and Zhu, T. (2014), "Phase-field modeling of martensitic microstructure in NiTi shape memory alloys", Acta Mater., 75, 337-347. https://doi.org/10.1016/j.actamat.2014.04.013
- Zhong, Y., Gall, K. and Zhu, T. (2011), "Atomistic study of nanotwins in NiTi shape memory alloys", J. Appl. Phys., 110(3), 033532. https://doi.org/10.1063/1.3621429
- Zhong, Y., Gall, K. and Zhu, T. (2012), "Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars", Acta Mater., 60(18), 6301-6311. https://doi.org/10.1016/j.actamat.2012.08.004