DOI QR코드

DOI QR Code

Influence of the microstructure on effective mechanical properties of carbon nanotube composites

  • Drucker, Sven (Institute of Polymer Composites, Hamburg University of Technology) ;
  • Wilmers, Jana (Chair of Solid Mechanics, University of Wuppertal) ;
  • Bargmann, Swantje (Chair of Solid Mechanics, University of Wuppertal)
  • Received : 2016.11.10
  • Accepted : 2017.04.05
  • Published : 2017.03.25

Abstract

Despite the exceptional mechanical properties of individual carbon nanotubes (CNTs), the effective properties of CNT-reinforced composites remain below expectations. The composite's microstructure has been identified as a key factor in explaining this discrepancy. In this contribution, a method for generating representative volume elements of aligned CNT sheets is presented. The model captures material characteristics such as random waviness and entanglement of individual nanotubes. Thus it allows studying microstructural effects on the composite's effective properties. Simulations investigating the strengthening effect of the application of a pre-stretch on the CNTs are carried out and found to be in very good agreement with experimental values. They highlight the importance of the nanotube's waviness and entanglement for the mechanical behavior of the composite. The presented representative volume elements are the first to accurately capture the waviness and entanglement of CNT sheets for realistically high volume fractions.

Keywords

Acknowledgement

Supported by : German Research Foundation (DFG)

References

  1. Andrews, R. and Weisenberger, M.C. (2004), "Carbon nanotube polymer composites", Curr. Opin. Sol. State Mater. Sci., 8(1), 31-37. https://doi.org/10.1016/j.cossms.2003.10.006
  2. Bradshaw, R.D., Fisher, F.T. and Brinson, L.C. (2003), "Fiber waviness in nanotube-reinforced polymer composites-II: Modeling via numerical approximation of the dilute strain concentration tensor", Compos. Sci. Technol., 63(11), 1705-1722. https://doi.org/10.1016/S0266-3538(03)00070-8
  3. Cheng, H.C., Liu, Y.L., Hsu, Y.C. and Chen, W.H. (2009), "Atomistic-continuum modeling for mechanical properties of single-walled carbon nanotubes", J. Sol. Struct., 46(7), 1695-1704. https://doi.org/10.1016/j.ijsolstr.2008.12.013
  4. Cumings, J. and Zettl, A. (2000), "Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes", Sci., 289(5479), 602-604. https://doi.org/10.1126/science.289.5479.602
  5. Dastgerdi, J.N., Marquis, G. and Salimi, M. (2013), "The effect of nanotubes waviness on mechanical properties of CNT/SMP composites", Compos. Sci. Technol., 86, 164-169. https://doi.org/10.1016/j.compscitech.2013.07.012
  6. Demczyk, B.G., Wang, Y.M., Cumings, J., Hetman, M., Han, W., Zettl, A. and Ritchie, R.O. (2002), "Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes", Mater. Sci. Eng.: A, 334(1), 173-178. https://doi.org/10.1016/S0921-5093(01)01807-X
  7. Dickrell, P.L., Sinnott, S.B., Hahn, D.W., Raravikar, N.R., Schadler, L.S., Ajayan, P.M. and Sawyer, W.G. (2005), "Frictional anisotropy of oriented carbon nanotube surfaces", Tribol. Lett., 18(1), 59-62. https://doi.org/10.1007/s11249-004-1752-0
  8. Fisher, F.T., Bradshaw, R.D. and Brinson, L.C. (2002), "Effects of nanotube waviness on the modulus of nanotube-reinforced polymers", Appl. Phys. Lett., 80(24), 4647-4649. https://doi.org/10.1063/1.1487900
  9. Fisher, F.T., Bradshaw, R.D. and Brinson, L.C. (2003), "Fiber waviness in nanotube-reinforced polymer composites-I: Modulus predictions using effective nanotube properties", Compos. Sci. Technol., 63(11), 1689-1703. https://doi.org/10.1016/S0266-3538(03)00069-1
  10. Ginga, N.J., Chen, W. and Sitaraman, S.K. (2014), "Waviness reduces effective modulus of carbon nanotube forests by several orders of magnitude", Carbon, 66, 57-66. https://doi.org/10.1016/j.carbon.2013.08.042
  11. Goh, P.S., Ismail, A.F. and Ng, B.C. (2014), "Directional alignment of carbon nanotubes in polymer matrices: Contemporary approaches and future advances", Compos. Part A, 56, 103-126. https://doi.org/10.1016/j.compositesa.2013.10.001
  12. Govindjee, S. and Sackman, J.L. (1999), "On the use of continuum mechanics to estimate the properties of nanotubes", Sol. State Commun., 110(4), 227-230. https://doi.org/10.1016/S0038-1098(98)00626-7
  13. Grady, B.P. (2011), Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications, John Wiley & Sons, New York, U.S.A.
  14. Herasati, S. and Zhang, L. (2014), "A new method for characterizing and modeling the waviness and alignment of carbon nanotubes in composites", Compos. Sci. Technol., 100, 136-142. https://doi.org/10.1016/j.compscitech.2014.06.004
  15. Hernandez, E., Goze, C., Bernier, P. and Rubio, A. (1998), "Elastic properties of C and $B_{x}C_{y}N_{z}$ composite nanotubes", Phys. Rev. Lett., 80(20), 4502. https://doi.org/10.1103/PhysRevLett.80.4502
  16. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nat., 354(6348), 56-58. https://doi.org/10.1038/354056a0
  17. Inoue, Y., Kakihata, K., Hirono, Y., Horie, T., Ishida, A. and Mimura, H. (2008), "One-step grown aligned bulk carbon nanotubes by chloride mediated chemical vapor deposition", Appl. Phys. Lett., 92(21), 213113. https://doi.org/10.1063/1.2937082
  18. Inoue, Y., Suzuki, Y., Minami, Y., Muramatsu, J., Shimamura, Y., Suzuki, K., Ghemes, A., Okada, M., Sakakibara, S., Mimura, H. and Naito, K. (2011), "Anisotropic carbon nanotube papers fabricated from multiwalled carbon nanotube webs", Carbon, 49(7), 2437-2443. https://doi.org/10.1016/j.carbon.2011.02.010
  19. Jin, Y. and Yuan, F.G. (2003), "Simulation of elastic properties of single-walled carbon nanotubes", Compos. Sci. Technol., 63(11), 1507-1515. https://doi.org/10.1016/S0266-3538(03)00074-5
  20. Kassem, G. (2010), "Micromechanical material models for polymer composites through advanced numerical simulation techniques", Ph.D. Dissertation.
  21. Kouznetsova, V.G., Geers, M.G.D. and Brekelmans, W.A.M. (2010), "Computational homogenization for non-linear heterogeneous solids", Multisc. Model. Sol. Mech.: Comput. Appro., 1-42.
  22. Li, C. and Chou, T.W. (2003), "A structural mechanics approach for the analysis of carbon nanotubes", J. Sol. Struct., 40(10), 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8
  23. Lu, J.P. (1997), "Elastic properties of carbon nanotubes and nanoropes", Phys. Rev. Lett., 79(7), 1297. https://doi.org/10.1103/PhysRevLett.79.1297
  24. Mecklenburg, M., Mizushima, D., Ohtake, N., Bauhofer, W., Fiedler, B. and Schulte, K. (2015), "On the manufacturing and electrical and mechanical properties of ultra-high wt.% fraction aligned MWCNT and randomly oriented CNT epoxy composites", Carbon, 91, 275-290. https://doi.org/10.1016/j.carbon.2015.04.085
  25. Nam, T.H., Goto, K., Nakayama, H., Oshima, K., Premalal, V., Shimamura, Y, Inoue, Y., Naito, K. and Kobayashi, S. (2014), "Effects of stretching on mechanical properties of aligned multi-walled carbonnanotube/epoxy composites", Compos. Part A, 64, 197-202.
  26. Nam, T.H., Goto, K., Yamaguchi, Y., Premalal, E., Shimamura, Y., Inoue, Y., Naito, K. and Ogihara, S. (2015), "Effects of CNT diameter on mechanical properties of aligned CNT sheets and composites", Compos. Part A, 76, 289-298. https://doi.org/10.1016/j.compositesa.2015.06.009
  27. Paunikar, S. and Kumar, S. (2014), "Effect of CNT waviness on the effective mechanical properties of long and short CNT reinforced composites", Comput. Mater. Sci., 95, 21-28. https://doi.org/10.1016/j.commatsci.2014.06.034
  28. Ru, C.Q. (2000), "Effective bending stiffness of carbon nanotubes", Phys. Rev. B, 62(15), 9973. https://doi.org/10.1103/PhysRevB.62.9973
  29. Salvetat, J.P., Kulik, A.J., Bonard, J.M., Briggs, G.A.D., Stockli, T., Metenier, K., Bonnamy, S., Beguin, F., Burnham, N.A. and Forro, L. (1999), "Elastic modulus of ordered and disordered multiwalled carbon nanotubes", Adv. Mater., 11(2), 161-165. https://doi.org/10.1002/(SICI)1521-4095(199902)11:2<161::AID-ADMA161>3.0.CO;2-J
  30. Schneider, K., Klusemann, B. and Bargmann, S. (2016), "Automatic three-dimensional geometry and mesh generation of periodic representative volume elements for matrix-inclusion composites", Adv. Eng. Soft., 99, 177-188. https://doi.org/10.1016/j.advengsoft.2016.06.001
  31. Schneider, K., Klusemann, B. and Bargmann, S. (2017), "Fully periodic RVEs for technological relevant composites: Not worth the effort!", J. Mech. Mater. Struct., In press.
  32. Shady, E. and Gowayed, Y. (2010), "Effect of nanotube geometry on the elastic properties of nanocomposites", Compos. Sci. Technol., 70(10), 1476-1481. https://doi.org/10.1016/j.compscitech.2010.04.027
  33. Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C. and Gao, H. (2004) "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites", J. Eng. Mater. Technol., 126, 250-257. https://doi.org/10.1115/1.1751182
  34. Stein, I.Y., Lewis, D.J. and Wardle, B.L. (2015), "Aligned carbon nanotube array stiffness from stochastic three-dimensional morphology", Nanos., 7(46), 19426-19431. https://doi.org/10.1039/C5NR06436H
  35. Thostenson, E.T., Li, C. and Chou, T.W. (2005), "Nanocomposites in context", Compos. Sci. Technol., 65(3), 491-516. https://doi.org/10.1016/j.compscitech.2004.11.003
  36. Tsuda, T., Ogasawara, T., Moon, S.Y., Nakamoto, K., Takeda, N., Shimamura, Y. and Inoue, Y. (2014), "Three dimensional orientation angle distribution counting and calculation for the mechanical properties of aligned carbon nanotube/epoxy composites", Compos. Part A, 65, 1-9.
  37. Van Lier, G., Van Alsenoy, C., Van Doren, V. and Geerlings, P. (2000), "Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene", Chem. Phys. Lett., 326(1), 181-185. https://doi.org/10.1016/S0009-2614(00)00764-8
  38. Wernik, J.M. and Meguid, S.A. (2010), "Atomistic-based continuum modeling of the nonlinear behavior of carbon nanotubes", Acta Mech., 212(1), 167-179. https://doi.org/10.1007/s00707-009-0246-4
  39. Wong, E.W., Sheehan, P.E. and Lieber, C.M. (1997), "Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes", Sci., 277(5334), 1971-1975. https://doi.org/10.1126/science.277.5334.1971
  40. Yakobson, B.I. and Smalley, R.E. (1997), "Fullerene nanotubes: $C_{1,000,000}$ and beyond", Am. Sci., 85(4), 324-337.
  41. Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F. and Ruoff, R.S. (2000), "Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load", Sci., 287(5453), 637-640. https://doi.org/10.1126/science.287.5453.637
  42. Yuan, Z. and Fish, J. (2008), "Computational homogenization in practice", J. Numer. Meth. Eng., 73(3), 361-380. https://doi.org/10.1002/nme.2074