Acknowledgement
Supported by : German Research Foundation (DFG)
References
- Andrews, R. and Weisenberger, M.C. (2004), "Carbon nanotube polymer composites", Curr. Opin. Sol. State Mater. Sci., 8(1), 31-37. https://doi.org/10.1016/j.cossms.2003.10.006
- Bradshaw, R.D., Fisher, F.T. and Brinson, L.C. (2003), "Fiber waviness in nanotube-reinforced polymer composites-II: Modeling via numerical approximation of the dilute strain concentration tensor", Compos. Sci. Technol., 63(11), 1705-1722. https://doi.org/10.1016/S0266-3538(03)00070-8
- Cheng, H.C., Liu, Y.L., Hsu, Y.C. and Chen, W.H. (2009), "Atomistic-continuum modeling for mechanical properties of single-walled carbon nanotubes", J. Sol. Struct., 46(7), 1695-1704. https://doi.org/10.1016/j.ijsolstr.2008.12.013
- Cumings, J. and Zettl, A. (2000), "Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes", Sci., 289(5479), 602-604. https://doi.org/10.1126/science.289.5479.602
- Dastgerdi, J.N., Marquis, G. and Salimi, M. (2013), "The effect of nanotubes waviness on mechanical properties of CNT/SMP composites", Compos. Sci. Technol., 86, 164-169. https://doi.org/10.1016/j.compscitech.2013.07.012
- Demczyk, B.G., Wang, Y.M., Cumings, J., Hetman, M., Han, W., Zettl, A. and Ritchie, R.O. (2002), "Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes", Mater. Sci. Eng.: A, 334(1), 173-178. https://doi.org/10.1016/S0921-5093(01)01807-X
- Dickrell, P.L., Sinnott, S.B., Hahn, D.W., Raravikar, N.R., Schadler, L.S., Ajayan, P.M. and Sawyer, W.G. (2005), "Frictional anisotropy of oriented carbon nanotube surfaces", Tribol. Lett., 18(1), 59-62. https://doi.org/10.1007/s11249-004-1752-0
- Fisher, F.T., Bradshaw, R.D. and Brinson, L.C. (2002), "Effects of nanotube waviness on the modulus of nanotube-reinforced polymers", Appl. Phys. Lett., 80(24), 4647-4649. https://doi.org/10.1063/1.1487900
- Fisher, F.T., Bradshaw, R.D. and Brinson, L.C. (2003), "Fiber waviness in nanotube-reinforced polymer composites-I: Modulus predictions using effective nanotube properties", Compos. Sci. Technol., 63(11), 1689-1703. https://doi.org/10.1016/S0266-3538(03)00069-1
- Ginga, N.J., Chen, W. and Sitaraman, S.K. (2014), "Waviness reduces effective modulus of carbon nanotube forests by several orders of magnitude", Carbon, 66, 57-66. https://doi.org/10.1016/j.carbon.2013.08.042
- Goh, P.S., Ismail, A.F. and Ng, B.C. (2014), "Directional alignment of carbon nanotubes in polymer matrices: Contemporary approaches and future advances", Compos. Part A, 56, 103-126. https://doi.org/10.1016/j.compositesa.2013.10.001
- Govindjee, S. and Sackman, J.L. (1999), "On the use of continuum mechanics to estimate the properties of nanotubes", Sol. State Commun., 110(4), 227-230. https://doi.org/10.1016/S0038-1098(98)00626-7
- Grady, B.P. (2011), Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications, John Wiley & Sons, New York, U.S.A.
- Herasati, S. and Zhang, L. (2014), "A new method for characterizing and modeling the waviness and alignment of carbon nanotubes in composites", Compos. Sci. Technol., 100, 136-142. https://doi.org/10.1016/j.compscitech.2014.06.004
-
Hernandez, E., Goze, C., Bernier, P. and Rubio, A. (1998), "Elastic properties of C and
$B_{x}C_{y}N_{z}$ composite nanotubes", Phys. Rev. Lett., 80(20), 4502. https://doi.org/10.1103/PhysRevLett.80.4502 - Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nat., 354(6348), 56-58. https://doi.org/10.1038/354056a0
- Inoue, Y., Kakihata, K., Hirono, Y., Horie, T., Ishida, A. and Mimura, H. (2008), "One-step grown aligned bulk carbon nanotubes by chloride mediated chemical vapor deposition", Appl. Phys. Lett., 92(21), 213113. https://doi.org/10.1063/1.2937082
- Inoue, Y., Suzuki, Y., Minami, Y., Muramatsu, J., Shimamura, Y., Suzuki, K., Ghemes, A., Okada, M., Sakakibara, S., Mimura, H. and Naito, K. (2011), "Anisotropic carbon nanotube papers fabricated from multiwalled carbon nanotube webs", Carbon, 49(7), 2437-2443. https://doi.org/10.1016/j.carbon.2011.02.010
- Jin, Y. and Yuan, F.G. (2003), "Simulation of elastic properties of single-walled carbon nanotubes", Compos. Sci. Technol., 63(11), 1507-1515. https://doi.org/10.1016/S0266-3538(03)00074-5
- Kassem, G. (2010), "Micromechanical material models for polymer composites through advanced numerical simulation techniques", Ph.D. Dissertation.
- Kouznetsova, V.G., Geers, M.G.D. and Brekelmans, W.A.M. (2010), "Computational homogenization for non-linear heterogeneous solids", Multisc. Model. Sol. Mech.: Comput. Appro., 1-42.
- Li, C. and Chou, T.W. (2003), "A structural mechanics approach for the analysis of carbon nanotubes", J. Sol. Struct., 40(10), 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8
- Lu, J.P. (1997), "Elastic properties of carbon nanotubes and nanoropes", Phys. Rev. Lett., 79(7), 1297. https://doi.org/10.1103/PhysRevLett.79.1297
- Mecklenburg, M., Mizushima, D., Ohtake, N., Bauhofer, W., Fiedler, B. and Schulte, K. (2015), "On the manufacturing and electrical and mechanical properties of ultra-high wt.% fraction aligned MWCNT and randomly oriented CNT epoxy composites", Carbon, 91, 275-290. https://doi.org/10.1016/j.carbon.2015.04.085
- Nam, T.H., Goto, K., Nakayama, H., Oshima, K., Premalal, V., Shimamura, Y, Inoue, Y., Naito, K. and Kobayashi, S. (2014), "Effects of stretching on mechanical properties of aligned multi-walled carbonnanotube/epoxy composites", Compos. Part A, 64, 197-202.
- Nam, T.H., Goto, K., Yamaguchi, Y., Premalal, E., Shimamura, Y., Inoue, Y., Naito, K. and Ogihara, S. (2015), "Effects of CNT diameter on mechanical properties of aligned CNT sheets and composites", Compos. Part A, 76, 289-298. https://doi.org/10.1016/j.compositesa.2015.06.009
- Paunikar, S. and Kumar, S. (2014), "Effect of CNT waviness on the effective mechanical properties of long and short CNT reinforced composites", Comput. Mater. Sci., 95, 21-28. https://doi.org/10.1016/j.commatsci.2014.06.034
- Ru, C.Q. (2000), "Effective bending stiffness of carbon nanotubes", Phys. Rev. B, 62(15), 9973. https://doi.org/10.1103/PhysRevB.62.9973
- Salvetat, J.P., Kulik, A.J., Bonard, J.M., Briggs, G.A.D., Stockli, T., Metenier, K., Bonnamy, S., Beguin, F., Burnham, N.A. and Forro, L. (1999), "Elastic modulus of ordered and disordered multiwalled carbon nanotubes", Adv. Mater., 11(2), 161-165. https://doi.org/10.1002/(SICI)1521-4095(199902)11:2<161::AID-ADMA161>3.0.CO;2-J
- Schneider, K., Klusemann, B. and Bargmann, S. (2016), "Automatic three-dimensional geometry and mesh generation of periodic representative volume elements for matrix-inclusion composites", Adv. Eng. Soft., 99, 177-188. https://doi.org/10.1016/j.advengsoft.2016.06.001
- Schneider, K., Klusemann, B. and Bargmann, S. (2017), "Fully periodic RVEs for technological relevant composites: Not worth the effort!", J. Mech. Mater. Struct., In press.
- Shady, E. and Gowayed, Y. (2010), "Effect of nanotube geometry on the elastic properties of nanocomposites", Compos. Sci. Technol., 70(10), 1476-1481. https://doi.org/10.1016/j.compscitech.2010.04.027
- Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C. and Gao, H. (2004) "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites", J. Eng. Mater. Technol., 126, 250-257. https://doi.org/10.1115/1.1751182
- Stein, I.Y., Lewis, D.J. and Wardle, B.L. (2015), "Aligned carbon nanotube array stiffness from stochastic three-dimensional morphology", Nanos., 7(46), 19426-19431. https://doi.org/10.1039/C5NR06436H
- Thostenson, E.T., Li, C. and Chou, T.W. (2005), "Nanocomposites in context", Compos. Sci. Technol., 65(3), 491-516. https://doi.org/10.1016/j.compscitech.2004.11.003
- Tsuda, T., Ogasawara, T., Moon, S.Y., Nakamoto, K., Takeda, N., Shimamura, Y. and Inoue, Y. (2014), "Three dimensional orientation angle distribution counting and calculation for the mechanical properties of aligned carbon nanotube/epoxy composites", Compos. Part A, 65, 1-9.
- Van Lier, G., Van Alsenoy, C., Van Doren, V. and Geerlings, P. (2000), "Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene", Chem. Phys. Lett., 326(1), 181-185. https://doi.org/10.1016/S0009-2614(00)00764-8
- Wernik, J.M. and Meguid, S.A. (2010), "Atomistic-based continuum modeling of the nonlinear behavior of carbon nanotubes", Acta Mech., 212(1), 167-179. https://doi.org/10.1007/s00707-009-0246-4
- Wong, E.W., Sheehan, P.E. and Lieber, C.M. (1997), "Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes", Sci., 277(5334), 1971-1975. https://doi.org/10.1126/science.277.5334.1971
-
Yakobson, B.I. and Smalley, R.E. (1997), "Fullerene nanotubes:
$C_{1,000,000}$ and beyond", Am. Sci., 85(4), 324-337. - Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F. and Ruoff, R.S. (2000), "Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load", Sci., 287(5453), 637-640. https://doi.org/10.1126/science.287.5453.637
- Yuan, Z. and Fish, J. (2008), "Computational homogenization in practice", J. Numer. Meth. Eng., 73(3), 361-380. https://doi.org/10.1002/nme.2074