References
- Basu, P., 1999 : Combustion of coal in circulating fluidizedbed boilers: a review, Chemical Engineering Science, 54(22), pp. 5547-5557. https://doi.org/10.1016/S0009-2509(99)00285-7
- Manz, O. E., 1997 : Worldwide production of coal ash and utilization in concrete and other products, Fuel, 76(8), pp. 691-696. https://doi.org/10.1016/S0016-2361(96)00215-3
- Ahmaruzzaman, M., 2010 : A review on the utilization of fly ash, Progress in Energy Combustion, 36(3), pp. 327-363. https://doi.org/10.1016/j.pecs.2009.11.003
- Jang, J. G., Kim, H. J., Kim, H. K., and Lee, H. K., 2016 : Resistance of coal bottom ash mortar against the coupled deterioration of carbonation and chloride penetration, Materials & Design, 93, pp. 160-167. https://doi.org/10.1016/j.matdes.2015.12.074
- Cheriaf, M., Cavalcante Rocha, J., and Pera, J., 1999 : Pozzolanic properties of pulverized coal combustion bottom ash, Cement and Concrete Research, 29(9), pp. 1387-1391. https://doi.org/10.1016/S0008-8846(99)00098-8
- Sheng, G., Li, Q., and Zhai, J., 2012 : Investigation on the hydration of CFBC fly ash, Fuel, 98, pp. 61-66. https://doi.org/10.1016/j.fuel.2012.02.008
- Baek, C.-S., Seo, J.-H., Ahn, J.-W., Han, C., and Cho, K.-H., 2015 : A review of desulfurization technology using limestone in circulating fluidized bed boiler type power plant, Journal of the Korean Institute of Resources Recycling, 24(5), pp. 3-14. https://doi.org/10.7844/KIRR.2015.24.5.3
- Jang, J. G. and Lee, H. K., 2016 : Effect of fly ash characteristics on delayed high-strength development of geopolymers, Construction and Building Materials, 102, pp. 260-269. https://doi.org/10.1016/j.conbuildmat.2015.10.172
- Park, S. M., Jang, J. G., Lee, N. K., and Lee, H. K., 2016 : Physicochemical properties of binder gel in alkaliactivated fly ash/slag exposed to high temperatures, Cement and Concrete Research, 89, pp. 72-79. https://doi.org/10.1016/j.cemconres.2016.08.004
- Jang, J. G., Ahn, Y. B., Hamid, S., and Lee, H. K., 2015 : A novel eco-friendly porous concrete fabricated with coal ash and geopolymeric binder: Heavy metal leaching characteristics and compressive strength, Construction and Building Materials, 79, pp. 173-181. https://doi.org/10.1016/j.conbuildmat.2015.01.058
- Kim, H. K., Jang, J. G., Choi, Y. C., and Lee, H. K., 2014 : Improved chloride resistance of high-strength concrete amended with coal bottom ash for internal curing, Construction and Building Materials, 71, pp. 334-343. https://doi.org/10.1016/j.conbuildmat.2014.08.069
- Jang, J. G., Lee, N. K., and Lee, H. K., 2014 : Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers, Construction and Building Materials, 50, pp. 169-176. https://doi.org/10.1016/j.conbuildmat.2013.09.048
- Kim, S. L. and Park, J. H., 2015: Research and development trends for mine subsidence prevention technology in Korea, Tunnel & Underground Space, 25(5), pp. 408-416. https://doi.org/10.7474/TUS.2015.25.5.408
- Akcil, A. and Koldas, S., 2006 : Acid Mine Drainage (AMD): causes, treatment and case studies, Journal of Cleaner Production, 14, pp. 1139-1145. https://doi.org/10.1016/j.jclepro.2004.09.006
- Nhan, C. T., Graydon, J. W., and Kirk, D. W., 1996 : Utilizing coal fly ash as a landfill barrier material, Waste Management, 16(7), pp. 587-595. https://doi.org/10.1016/S0956-053X(96)00108-0
- Yanli, H., Jixiong, Z., Qiang, Z., and Shoujiang N., 2011 : Backfilling technology of substituting waste and fly ash for coal underground in china coal mining area, Environmental Engineering & Management Journal, 10(6), pp. 769-775.
- Mishra, M. K. and Karanam, U. M. R., 2006 : Geotechnical characterization of fly ash composites for backfilling mine voids, Geotechnical & Geological Engineering, 24, pp. 1749-1765. https://doi.org/10.1007/s10706-006-6805-8
- Ram, L. C. and Masto, R. E., 2010 : An appraisal of the potential use of fly ash for reclaiming coal mine spoil, Journal of Environmental Management, 91(3), pp. 603-617. https://doi.org/10.1016/j.jenvman.2009.10.004
- Siriwardane, H. J., Kannan, R. S. S., and Ziemkiewicz, P. F., 2003 : Use of waste materials for control of acid mine drainage and subsidence, Journal of Environmental Engineering, 129(10), pp. 910-915. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:10(910)
- Anthony, E. J., Jia, L., and Wu, Y., 2005 : CFBC ash hydration studies, Fuel, 84(11), pp. 1393-1397. https://doi.org/10.1016/j.fuel.2004.10.017
- Sheng, G., Li, Q., Zhai, J., and Li, F., 2007 : Selfcementitious properties of fly ashes from CFBC boilers cofiring coal and high-sulphur petroleum coke, Cement and Concrete Research, 37(6), pp. 871-876. https://doi.org/10.1016/j.cemconres.2007.03.013
- Li, X.-G., Chen, Q.-B., Huang, K.-Z., Ma, B.-G., and Wu, B., 2012 : Cementitious properties and hydration mechanism of circulating fluidized bed combustion (CFBC) desulfurization ashes, Construction and Building Materials, 36, pp. 182-187. https://doi.org/10.1016/j.conbuildmat.2012.05.017
- Li, X.-G., Chen, Q.-B., Ma, B.-G., Huang, J., Jian, S.-W., and Wu, B., 2012 : Utilization of modified CFBC desulfurization ash as an admixture in blended cements: Physico-mechanical and hydration characteristics, Fuel, 102, pp. 674-680. https://doi.org/10.1016/j.fuel.2012.07.010
- Wu, T., Chi, M., and Huang, R., 2014 : Characteristics of CFBC fly ash and properties of cement-based composites with CFBC fly ash and coal-fired fly ash, Construction and Building Materials, 66, pp. 172-180. https://doi.org/10.1016/j.conbuildmat.2014.05.057
- Chi, M. and Huang, R., 2014 : Effect of circulating fluidized bed combustion ash on the properties of roller compacted concrete, Cement and Concrete Composites, 45, pp. 148-156. https://doi.org/10.1016/j.cemconcomp.2013.10.001
- Fu, X., Li, Q., Zhai, J., Sheng, G., and Li, F., 2008 : The physical-chemical characterization of mechanically-treated CFBC fly ash, Cement and Concrete Composites, 30(3), pp. 220-226. https://doi.org/10.1016/j.cemconcomp.2007.08.006
- Song, Y., Guo, C., Qian, J., and Ding, T., 2015 : Effect of the Ca-to-Si ratio on the properties of autoclaved aerated concrete containing coal fly ash from circulating fluidized bed combustion boiler, Construction and Building Materials, 83, pp. 136-142. https://doi.org/10.1016/j.conbuildmat.2015.02.077
- Provis, J. L. and van Deventer, J. S. J., 2014 : Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM, Springer.
- Jang, J. G., Park, S. M., and Lee, H. K., 2017: Alkaliactivation of fly ash: Performances and potential industrial applications, Chapter 5 in: Fly ah: Properties, Analysis and Performance, pp. 99-121, Nova Science Publishers.
- Chindaprasirt, P. and Rattanasak, U., 2010 : Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer, Waste Management, 30(4), pp. 667-672. https://doi.org/10.1016/j.wasman.2009.09.040
- Chindaprasirt, P., Rattanasak, U., and Jaturapitakkul, C., 2011 : Utilization of fly ash blends from pulverized coal and fluidized bed combustions in geopolymeric materials, Cement and Concrete Composites, 33(1), pp. 55-60. https://doi.org/10.1016/j.cemconcomp.2010.09.017
- Xu, H., Li, Q., Shen, L., Zhang, M., and Zhai, J., 2010 : Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis, Waste Management, 30(1), pp. 57-62. https://doi.org/10.1016/j.wasman.2009.09.014
- Li, Q., Xu, H., Li, F., Li, P., Shen, L., and Zhai, J., 2012 : Synthesis of geopolymer composites from blends of CFBC fly and bottom ashes, Fuel, 97, pp. 366-372. https://doi.org/10.1016/j.fuel.2012.02.059
- Chindaprasirt, P., Thaiwitcharoen, S., Kaewpirom, S., and Rattanasak, U., 2013 : Controlling ettringite formation in FBC fly ash geopolymer concrete, Cement and Concrete Composites, 41, pp. 24-28. https://doi.org/10.1016/j.cemconcomp.2013.04.009
- Xu, H., Li, Q., Shen, L., Wang, W., and Zhai, J., 2010 : Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes, Journal of Hazardous Materials, 175(1), pp. 198-204. https://doi.org/10.1016/j.jhazmat.2009.09.149
- Duan, P., Yan, C., Zhou, W., Luo, W., and Shen, C., 2015 : An investigation of the microstructure and durability of a fluidized bed fly ash-metakaolin geopolymer after heat and acid exposure, Materials & Design, 74, pp. 125-137. https://doi.org/10.1016/j.matdes.2015.03.009
- ACI Committee 229, 2013: 229R-13 Report on Controlled Low-Strength Materials, American Concrete Institute.
- Kim, B. J., Jang, J. G., Park, C. Y., Han, O. H., and Kim, H. K., 2016 : Recycling of arsenic-rich mine tailings in controlled low-strength materials, Journal of Cleaner Production, 118, pp. 151-161. https://doi.org/10.1016/j.jclepro.2016.01.047
- Park, J. H., Edraki, M., Mulligan, D., and Jang, H. S., 2014 : The application of coal combustion by-products in mine site rehabilitation, Journal of Cleaner Production, 84, pp. 761-772. https://doi.org/10.1016/j.jclepro.2014.01.049
- Shon, C.-S., Mukhopadhyay, A. K., Saylak, D., Zollinger, D. G., and Mejeoumov, G. G., 2010 : Potential use of stockpiled circulating fluidized bed combustion ashes in controlled low strength material (CLSM) mixture, Construction and Building Materials, 24(5), pp. 839-847. https://doi.org/10.1016/j.conbuildmat.2009.10.022
- Hsu, H. M., Cheng, A., Chao, S. J., Huang, R., Cheng, T. C., and Lin, K. L., 2009 : Controlled low-strength materials containing bottom ash from circulating fluidized bed combustion, International Journal of Pavement Research and Technology, 2(6), pp. 250-256.
- Cheng, A., Hsu, H. M., Chao, S. J., Huang, R., Cheng, T. C., and Hwang, H. 2011 : Properties of circulating fluidized bed combustion ash and pulverized coal bottom ash used for backfill, Instrumentation, Testing, and Modeling of Soil and Rock Behavior, pp. 194-201.
- Canty, G. A. and Everett, J. W., 2006 : Alkaline injection technology: Field demonstration, Fuel, 85(17), pp. 2545-2554. https://doi.org/10.1016/j.fuel.2006.05.010
- Porter, C. M. and Nairn, R. W., 2010 : Fluidized bed ash and passive treatment reduce the adverse effects of acid mine drainage on aquatic organisms, Science of The Total Environment, 408(22), pp. 5445-5451. https://doi.org/10.1016/j.scitotenv.2010.07.089
- United States Environmental Protection Agency, 2001 : Coal remining - Best management practices guidance manual, EPA-821-B-01-010, Washington DC.
- Murarka, I. P. and Erickson, J. 2006 : Use of coal combustion products in mine-filling applications: A review of available literature and case studies, DOE Award No. 99-CBRC.
- Ward, C. R., French, D., Jankowski, J., Riley, K., and Li, Z. 2006: Use of coal ash in mine backfill and related applications, QCAT Technology Transfer Centre.
- Mine Environment Neutral Drainage Program, 2006: Paste backfill geochemistry - Environmental effects of leaching and weathering, MEND Report 10.2.
- American Society for Testing and Materials, ASTM E2243-13, 2013 : Standard guide for use of coal combustion products (CCPs) for surface mine reclamation: Re-contouring and highwall reclamation, ASTM International.
- American Society for Testing and Materials, ASTM E2278-13, 2013 : Standard guide for use of coal combustion products (CCPs) for surface mine reclamation: Revegetation and mitigation of acid mine drainage, ASTM International.
- American Society for Testing and Materials, WK17919, 2007 : New Guide for the use of coal combustion products for underground mine fill, ASTM International.
Cited by
- CO2 고정화된 CFBC 석탄재를 활용한 저강도 고유동 채움재의 특성평가 vol.26, pp.11, 2017, https://doi.org/10.5322/jesi.2017.26.11.1267
- CO2고정화한 제강슬래그와 발전소 바닥재를 활용한 저강도 고유동 채움재의 특성 vol.27, pp.2, 2017, https://doi.org/10.5855/energy.2018.27.2.055
- 베트남 CFBC 플라이애시를 사용한 지반고화재의 특성 vol.27, pp.3, 2017, https://doi.org/10.7844/kirr.2018.27.3.39
- 발전소 비산재를 결합재로 활용한 로내탈황용 석회 흡수제의 탈황효율 vol.27, pp.3, 2017, https://doi.org/10.7844/kirr.2018.27.3.58
- 수중 공동보강용 석고 활용 저 pH형 수중불분리 그라우트에 대한 실험적 연구 vol.27, pp.6, 2018, https://doi.org/10.7844/kirr.2018.27.6.30
- 국내 순환유동층보일러 석탄재의 희토류 분포 특성 및 평가 vol.27, pp.6, 2018, https://doi.org/10.7844/kirr.2018.27.6.68
- Numerical Analysis of Modified Electrical Resistivity Survey for Filling Status of Mine Backfills vol.56, pp.2, 2019, https://doi.org/10.32390/ksmer.2019.56.2.140
- 알루미늄 캔 스크랩의 용탕처리 시 알루미늄 합금 회수에 미치는 플럭스의 영향 vol.29, pp.1, 2017, https://doi.org/10.7844/kirr.2020.29.1.70