DOI QR코드

DOI QR Code

Utilization of Circulating Fluidized Bed Combustion Ash and Related Specifications for Mine Backfills

순환유동층 석탄재의 활용 기술과 광산 채움재 관련 규격 동향

  • Jang, Jeong Gook (Korea Institute of Geoscience and Mineral Resources) ;
  • Ji, Sangwoo (Korea Institute of Geoscience and Mineral Resources) ;
  • Ahn, Ji-Whan (Korea Institute of Geoscience and Mineral Resources)
  • Received : 2017.02.16
  • Accepted : 2017.02.24
  • Published : 2017.04.30

Abstract

Circulating fluidized bed combustion (CFBC) ash is one of useful mineralogical resources having abundant content of free lime and anhydrite, and has a self-cementitious property. Recently, considerable interest has been gained regarding the utilization of CFBC ash, along with its use in mine backfill and reclamation. Prior to adopt the use of CFBC ash in the mine backfill technology, discussion on the technology and related specification is prerequisite in the future. This paper presents a review on studies in the emerging technology of CFBC ash utilization, and provides useful information with regard to the specifications for mine backfills utilizing CFBC ash.

순환유동층(CFBC) 보일러 방식의 석탄화력발전소에서 발생하는 석탄재는 유리 석회와 무수석고의 함량이 풍부하고 자경성을 가지는 것을 특징으로 하는 물질로서 유용하게 활용해야 할 자원 중 하나이다. 최근 CFBC 석탄재를 포함하여 석탄화력발전소 부산물을 활용한 광산 채움 기술 및 광해 관리에 대한 관심이 점차 증가하고 있는 가운데, CFBC 석탄재를 광산 채움 분야에 적용하기 위해서는 기술에 대한 검토와 함께 관련 규격에 대해 향후 충분히 논의를 거쳐야 할 여지가 있다. 이를 위해, 본 논문에서는 CFBC 석탄재의 유효 활용 기술에 대한 연구동향을 소개하고, 광산 채움 분야의 활용을 위해 국외의 규격 동향을 고찰한 후 연구방향 및 시사점에 대해 정리하였다.

Keywords

References

  1. Basu, P., 1999 : Combustion of coal in circulating fluidizedbed boilers: a review, Chemical Engineering Science, 54(22), pp. 5547-5557. https://doi.org/10.1016/S0009-2509(99)00285-7
  2. Manz, O. E., 1997 : Worldwide production of coal ash and utilization in concrete and other products, Fuel, 76(8), pp. 691-696. https://doi.org/10.1016/S0016-2361(96)00215-3
  3. Ahmaruzzaman, M., 2010 : A review on the utilization of fly ash, Progress in Energy Combustion, 36(3), pp. 327-363. https://doi.org/10.1016/j.pecs.2009.11.003
  4. Jang, J. G., Kim, H. J., Kim, H. K., and Lee, H. K., 2016 : Resistance of coal bottom ash mortar against the coupled deterioration of carbonation and chloride penetration, Materials & Design, 93, pp. 160-167. https://doi.org/10.1016/j.matdes.2015.12.074
  5. Cheriaf, M., Cavalcante Rocha, J., and Pera, J., 1999 : Pozzolanic properties of pulverized coal combustion bottom ash, Cement and Concrete Research, 29(9), pp. 1387-1391. https://doi.org/10.1016/S0008-8846(99)00098-8
  6. Sheng, G., Li, Q., and Zhai, J., 2012 : Investigation on the hydration of CFBC fly ash, Fuel, 98, pp. 61-66. https://doi.org/10.1016/j.fuel.2012.02.008
  7. Baek, C.-S., Seo, J.-H., Ahn, J.-W., Han, C., and Cho, K.-H., 2015 : A review of desulfurization technology using limestone in circulating fluidized bed boiler type power plant, Journal of the Korean Institute of Resources Recycling, 24(5), pp. 3-14. https://doi.org/10.7844/KIRR.2015.24.5.3
  8. Jang, J. G. and Lee, H. K., 2016 : Effect of fly ash characteristics on delayed high-strength development of geopolymers, Construction and Building Materials, 102, pp. 260-269. https://doi.org/10.1016/j.conbuildmat.2015.10.172
  9. Park, S. M., Jang, J. G., Lee, N. K., and Lee, H. K., 2016 : Physicochemical properties of binder gel in alkaliactivated fly ash/slag exposed to high temperatures, Cement and Concrete Research, 89, pp. 72-79. https://doi.org/10.1016/j.cemconres.2016.08.004
  10. Jang, J. G., Ahn, Y. B., Hamid, S., and Lee, H. K., 2015 : A novel eco-friendly porous concrete fabricated with coal ash and geopolymeric binder: Heavy metal leaching characteristics and compressive strength, Construction and Building Materials, 79, pp. 173-181. https://doi.org/10.1016/j.conbuildmat.2015.01.058
  11. Kim, H. K., Jang, J. G., Choi, Y. C., and Lee, H. K., 2014 : Improved chloride resistance of high-strength concrete amended with coal bottom ash for internal curing, Construction and Building Materials, 71, pp. 334-343. https://doi.org/10.1016/j.conbuildmat.2014.08.069
  12. Jang, J. G., Lee, N. K., and Lee, H. K., 2014 : Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers, Construction and Building Materials, 50, pp. 169-176. https://doi.org/10.1016/j.conbuildmat.2013.09.048
  13. Kim, S. L. and Park, J. H., 2015: Research and development trends for mine subsidence prevention technology in Korea, Tunnel & Underground Space, 25(5), pp. 408-416. https://doi.org/10.7474/TUS.2015.25.5.408
  14. Akcil, A. and Koldas, S., 2006 : Acid Mine Drainage (AMD): causes, treatment and case studies, Journal of Cleaner Production, 14, pp. 1139-1145. https://doi.org/10.1016/j.jclepro.2004.09.006
  15. Nhan, C. T., Graydon, J. W., and Kirk, D. W., 1996 : Utilizing coal fly ash as a landfill barrier material, Waste Management, 16(7), pp. 587-595. https://doi.org/10.1016/S0956-053X(96)00108-0
  16. Yanli, H., Jixiong, Z., Qiang, Z., and Shoujiang N., 2011 : Backfilling technology of substituting waste and fly ash for coal underground in china coal mining area, Environmental Engineering & Management Journal, 10(6), pp. 769-775.
  17. Mishra, M. K. and Karanam, U. M. R., 2006 : Geotechnical characterization of fly ash composites for backfilling mine voids, Geotechnical & Geological Engineering, 24, pp. 1749-1765. https://doi.org/10.1007/s10706-006-6805-8
  18. Ram, L. C. and Masto, R. E., 2010 : An appraisal of the potential use of fly ash for reclaiming coal mine spoil, Journal of Environmental Management, 91(3), pp. 603-617. https://doi.org/10.1016/j.jenvman.2009.10.004
  19. Siriwardane, H. J., Kannan, R. S. S., and Ziemkiewicz, P. F., 2003 : Use of waste materials for control of acid mine drainage and subsidence, Journal of Environmental Engineering, 129(10), pp. 910-915. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:10(910)
  20. Anthony, E. J., Jia, L., and Wu, Y., 2005 : CFBC ash hydration studies, Fuel, 84(11), pp. 1393-1397. https://doi.org/10.1016/j.fuel.2004.10.017
  21. Sheng, G., Li, Q., Zhai, J., and Li, F., 2007 : Selfcementitious properties of fly ashes from CFBC boilers cofiring coal and high-sulphur petroleum coke, Cement and Concrete Research, 37(6), pp. 871-876. https://doi.org/10.1016/j.cemconres.2007.03.013
  22. Li, X.-G., Chen, Q.-B., Huang, K.-Z., Ma, B.-G., and Wu, B., 2012 : Cementitious properties and hydration mechanism of circulating fluidized bed combustion (CFBC) desulfurization ashes, Construction and Building Materials, 36, pp. 182-187. https://doi.org/10.1016/j.conbuildmat.2012.05.017
  23. Li, X.-G., Chen, Q.-B., Ma, B.-G., Huang, J., Jian, S.-W., and Wu, B., 2012 : Utilization of modified CFBC desulfurization ash as an admixture in blended cements: Physico-mechanical and hydration characteristics, Fuel, 102, pp. 674-680. https://doi.org/10.1016/j.fuel.2012.07.010
  24. Wu, T., Chi, M., and Huang, R., 2014 : Characteristics of CFBC fly ash and properties of cement-based composites with CFBC fly ash and coal-fired fly ash, Construction and Building Materials, 66, pp. 172-180. https://doi.org/10.1016/j.conbuildmat.2014.05.057
  25. Chi, M. and Huang, R., 2014 : Effect of circulating fluidized bed combustion ash on the properties of roller compacted concrete, Cement and Concrete Composites, 45, pp. 148-156. https://doi.org/10.1016/j.cemconcomp.2013.10.001
  26. Fu, X., Li, Q., Zhai, J., Sheng, G., and Li, F., 2008 : The physical-chemical characterization of mechanically-treated CFBC fly ash, Cement and Concrete Composites, 30(3), pp. 220-226. https://doi.org/10.1016/j.cemconcomp.2007.08.006
  27. Song, Y., Guo, C., Qian, J., and Ding, T., 2015 : Effect of the Ca-to-Si ratio on the properties of autoclaved aerated concrete containing coal fly ash from circulating fluidized bed combustion boiler, Construction and Building Materials, 83, pp. 136-142. https://doi.org/10.1016/j.conbuildmat.2015.02.077
  28. Provis, J. L. and van Deventer, J. S. J., 2014 : Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM, Springer.
  29. Jang, J. G., Park, S. M., and Lee, H. K., 2017: Alkaliactivation of fly ash: Performances and potential industrial applications, Chapter 5 in: Fly ah: Properties, Analysis and Performance, pp. 99-121, Nova Science Publishers.
  30. Chindaprasirt, P. and Rattanasak, U., 2010 : Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer, Waste Management, 30(4), pp. 667-672. https://doi.org/10.1016/j.wasman.2009.09.040
  31. Chindaprasirt, P., Rattanasak, U., and Jaturapitakkul, C., 2011 : Utilization of fly ash blends from pulverized coal and fluidized bed combustions in geopolymeric materials, Cement and Concrete Composites, 33(1), pp. 55-60. https://doi.org/10.1016/j.cemconcomp.2010.09.017
  32. Xu, H., Li, Q., Shen, L., Zhang, M., and Zhai, J., 2010 : Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis, Waste Management, 30(1), pp. 57-62. https://doi.org/10.1016/j.wasman.2009.09.014
  33. Li, Q., Xu, H., Li, F., Li, P., Shen, L., and Zhai, J., 2012 : Synthesis of geopolymer composites from blends of CFBC fly and bottom ashes, Fuel, 97, pp. 366-372. https://doi.org/10.1016/j.fuel.2012.02.059
  34. Chindaprasirt, P., Thaiwitcharoen, S., Kaewpirom, S., and Rattanasak, U., 2013 : Controlling ettringite formation in FBC fly ash geopolymer concrete, Cement and Concrete Composites, 41, pp. 24-28. https://doi.org/10.1016/j.cemconcomp.2013.04.009
  35. Xu, H., Li, Q., Shen, L., Wang, W., and Zhai, J., 2010 : Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes, Journal of Hazardous Materials, 175(1), pp. 198-204. https://doi.org/10.1016/j.jhazmat.2009.09.149
  36. Duan, P., Yan, C., Zhou, W., Luo, W., and Shen, C., 2015 : An investigation of the microstructure and durability of a fluidized bed fly ash-metakaolin geopolymer after heat and acid exposure, Materials & Design, 74, pp. 125-137. https://doi.org/10.1016/j.matdes.2015.03.009
  37. ACI Committee 229, 2013: 229R-13 Report on Controlled Low-Strength Materials, American Concrete Institute.
  38. Kim, B. J., Jang, J. G., Park, C. Y., Han, O. H., and Kim, H. K., 2016 : Recycling of arsenic-rich mine tailings in controlled low-strength materials, Journal of Cleaner Production, 118, pp. 151-161. https://doi.org/10.1016/j.jclepro.2016.01.047
  39. Park, J. H., Edraki, M., Mulligan, D., and Jang, H. S., 2014 : The application of coal combustion by-products in mine site rehabilitation, Journal of Cleaner Production, 84, pp. 761-772. https://doi.org/10.1016/j.jclepro.2014.01.049
  40. Shon, C.-S., Mukhopadhyay, A. K., Saylak, D., Zollinger, D. G., and Mejeoumov, G. G., 2010 : Potential use of stockpiled circulating fluidized bed combustion ashes in controlled low strength material (CLSM) mixture, Construction and Building Materials, 24(5), pp. 839-847. https://doi.org/10.1016/j.conbuildmat.2009.10.022
  41. Hsu, H. M., Cheng, A., Chao, S. J., Huang, R., Cheng, T. C., and Lin, K. L., 2009 : Controlled low-strength materials containing bottom ash from circulating fluidized bed combustion, International Journal of Pavement Research and Technology, 2(6), pp. 250-256.
  42. Cheng, A., Hsu, H. M., Chao, S. J., Huang, R., Cheng, T. C., and Hwang, H. 2011 : Properties of circulating fluidized bed combustion ash and pulverized coal bottom ash used for backfill, Instrumentation, Testing, and Modeling of Soil and Rock Behavior, pp. 194-201.
  43. Canty, G. A. and Everett, J. W., 2006 : Alkaline injection technology: Field demonstration, Fuel, 85(17), pp. 2545-2554. https://doi.org/10.1016/j.fuel.2006.05.010
  44. Porter, C. M. and Nairn, R. W., 2010 : Fluidized bed ash and passive treatment reduce the adverse effects of acid mine drainage on aquatic organisms, Science of The Total Environment, 408(22), pp. 5445-5451. https://doi.org/10.1016/j.scitotenv.2010.07.089
  45. United States Environmental Protection Agency, 2001 : Coal remining - Best management practices guidance manual, EPA-821-B-01-010, Washington DC.
  46. Murarka, I. P. and Erickson, J. 2006 : Use of coal combustion products in mine-filling applications: A review of available literature and case studies, DOE Award No. 99-CBRC.
  47. Ward, C. R., French, D., Jankowski, J., Riley, K., and Li, Z. 2006: Use of coal ash in mine backfill and related applications, QCAT Technology Transfer Centre.
  48. Mine Environment Neutral Drainage Program, 2006: Paste backfill geochemistry - Environmental effects of leaching and weathering, MEND Report 10.2.
  49. American Society for Testing and Materials, ASTM E2243-13, 2013 : Standard guide for use of coal combustion products (CCPs) for surface mine reclamation: Re-contouring and highwall reclamation, ASTM International.
  50. American Society for Testing and Materials, ASTM E2278-13, 2013 : Standard guide for use of coal combustion products (CCPs) for surface mine reclamation: Revegetation and mitigation of acid mine drainage, ASTM International.
  51. American Society for Testing and Materials, WK17919, 2007 : New Guide for the use of coal combustion products for underground mine fill, ASTM International.

Cited by

  1. CO2 고정화된 CFBC 석탄재를 활용한 저강도 고유동 채움재의 특성평가 vol.26, pp.11, 2017, https://doi.org/10.5322/jesi.2017.26.11.1267
  2. CO2고정화한 제강슬래그와 발전소 바닥재를 활용한 저강도 고유동 채움재의 특성 vol.27, pp.2, 2017, https://doi.org/10.5855/energy.2018.27.2.055
  3. 베트남 CFBC 플라이애시를 사용한 지반고화재의 특성 vol.27, pp.3, 2017, https://doi.org/10.7844/kirr.2018.27.3.39
  4. 발전소 비산재를 결합재로 활용한 로내탈황용 석회 흡수제의 탈황효율 vol.27, pp.3, 2017, https://doi.org/10.7844/kirr.2018.27.3.58
  5. 수중 공동보강용 석고 활용 저 pH형 수중불분리 그라우트에 대한 실험적 연구 vol.27, pp.6, 2018, https://doi.org/10.7844/kirr.2018.27.6.30
  6. 국내 순환유동층보일러 석탄재의 희토류 분포 특성 및 평가 vol.27, pp.6, 2018, https://doi.org/10.7844/kirr.2018.27.6.68
  7. Numerical Analysis of Modified Electrical Resistivity Survey for Filling Status of Mine Backfills vol.56, pp.2, 2019, https://doi.org/10.32390/ksmer.2019.56.2.140
  8. 알루미늄 캔 스크랩의 용탕처리 시 알루미늄 합금 회수에 미치는 플럭스의 영향 vol.29, pp.1, 2017, https://doi.org/10.7844/kirr.2020.29.1.70