DOI QR코드

DOI QR Code

Leaching of Gold and Silver from Anode Slime with Inorganic Reagents

양극슬라임으로부터 무기침출제에 의한 금과 은의 침출

  • Xing, Wei Dong (Department of Advanced Material Science & Engineering, Institute of Rare Metal, Mokpo National University) ;
  • Lee, Ki Woog (SungEel Hitech Co., Ltd.) ;
  • Lee, Man Seung (Department of Advanced Material Science & Engineering, Institute of Rare Metal, Mokpo National University)
  • Received : 2016.12.05
  • Accepted : 2017.01.16
  • Published : 2017.02.28

Abstract

Leaching experiments of anode slime were performed with several inorganic acids (HCl, $HNO_3$ and $H_2SO_4$) together with thiourea and thiosulfate solution to recover gold and silver. Gold was not dissolved at all into these inorganic acids in the absence of any oxidizing agents. At the same concentration of inorganic acid, the leaching of percentage of Ag was the highest in the sulfuric acid solution. The leaching percentage of silver increased with the increase of HCl concentration owing to the formation of $AgCl_2{^-}$. Copper, nickel and zinc except tin was almost dissolved in these inorganic acids but no tin was dissolved in nitric acid solution. Most of Au and Ag were dissolved into the mixture of sulfuric acid and thiourea solution. Thiosulfate could dissolve some silver from the anode slime but no gold was dissolved by this agent.

양극흙에 함유된 금과 은을 회수하기 위해 무기산(염산, 질산, 황산)과 thiourea 및 thiosulfate에 의한 침출실험을 수행했다. 산화제를 첨가하지 않은 조건에서 금은 무기산용액에 전혀 용해되지 않았다. 3종류의 무기산의 농도가 동일한 조건에서 황산용액에서 은의 침출율이 가장 높았으며, 염산의 농도가 증가함에 따라 $AgCl_2{^-}$의 형성에 따라 은의 침출율이 증가하였다. 한편 주석은 질산용액에 전혀 용해되지 않았으나, 구리, 니켈과 아연은 본 실험조건에서 모두 용해되었다. 황산과 thiourea의 혼합용액에서 금과 은은 모두 용해되었다. Thiosulfate용액에 은의 일부가 용해되었으나, 금은 전혀 용해되지 않았다.

Keywords

References

  1. Chatterjee, B., 1996 : Electrowinning of gold from anode slimes. Materials Chemistry and Physics, 45, pp. 27-32. https://doi.org/10.1016/0254-0584(96)80043-5
  2. Cooper, W. Charles, 1990 : The Treatment of Copper Refinery Anode Slimes. Journal of Metals, pp. 45-49.
  3. Donmez, Bünyamin, Sevim, Fatih, Colak, Sabri, 2001 : A Study on Recovery of Gold from Decopperized Anode Slime. Chem. Eng. Technol., 24(1), pp. 91-95. https://doi.org/10.1002/1521-4125(200101)24:1<91::AID-CEAT91>3.0.CO;2-A
  4. Atefeh, Khaleghi, Sattar, Ghader, Dariush, Afzali, 2014 : Ag recovery from copper anode slime by acid leaching at atmospheric pressure to synthesize silver nanoparticles. International Journal of Mining Science and Technology, 24(2), pp. 251-257. https://doi.org/10.1016/j.ijmst.2014.01.018
  5. Hait, Jhumki, Jana, R. K., Kumar, Vinay, Sanyal, S. K., 2002 : Some Studies on Sulfuric Acid Leaching of Anode Slime with Additives. Ind. Eng. Chem. Res., 41(25), pp. 6593-6599. https://doi.org/10.1021/ie020239j
  6. Eleazar, Salinas Rodriguez, Juan, Hernandez Avila, Isauro, Rivera Landero, Eduardo, Cerecedo Saenz, Isabel, Reyes Valderrama Ma, Manuel, Correa Cruz, Daniel, Rubio Mihi, 2016 : Leaching of silver contained in mining tailings, using sodium thiosulfate: A kinetic study. Hydrometallurgy, 160, pp. 6-11. https://doi.org/10.1016/j.hydromet.2015.12.001
  7. Aylmore, M. G., 2016 : Thiosulfate as an Alternative Lixiviant to Cyanide for Gold Ores. Gold Ore Processing, pp. 485-523.
  8. Aylmore, M. G., Muir, D. M., Staunton, W. P., 2014 : Effect of minerals on the stability of gold in copper ammoniacal thiosulfate solutions - The role of copper, silver and polythionates. Hydrometallurgy, 143, pp. 12-22. https://doi.org/10.1016/j.hydromet.2013.12.001
  9. Feng, D., Deventer, J. S. J. van, 2002 : The role of heavy metal ions in gold dissolution in the ammoniacal thiosulphate system. Hydrometallurgy, 64, pp. 231-246. https://doi.org/10.1016/S0304-386X(02)00046-4
  10. G., Alvarado Macias, C., Fuentes Aceituno, J. F. Nava Alonso, 2016 : Study of silver leaching with the thiosulfate-nitrite-copper alternative system: Effect of thiosulfate concentration and leaching temperature. Minerals Engineering, 86, pp. 140-148. https://doi.org/10.1016/j.mineng.2015.12.011
  11. G., Alvarado Macias, C., Fuentes Aceituno, J. F. Nava Alonso, 2015 : Silver leaching with the thiosulfate-nitritesulfite-copper alternative system. Hydrometallurgy, 152, pp. 120-128. https://doi.org/10.1016/j.hydromet.2014.12.017
  12. Ubaldini, S., Fornari, P., Massidda, R., Abbruzzese, C., 1998 : An innovative thiourea gold leaching process. Hydrometallurgy, 48, pp. 113-124. https://doi.org/10.1016/S0304-386X(97)00076-5
  13. Xu, Bin, Yang, Yongbin, Jiang, Tao, Li, Qian, Zhang, Xi, Wang, Dan, 2015 : Improved thiosulfate leaching of a refractory gold concentrate calcine with additives. Hydrometallurgy, 152, pp. 214-222. https://doi.org/10.1016/j.hydromet.2014.12.016
  14. I. Rivera, F. Patino, A. Roca, M. Cruells, 2015 : Kinetics of metallic silver leaching in the $O_2$-thiosulfate system. Hydrometallurgy, 156, pp. 63-70. https://doi.org/10.1016/j.hydromet.2015.05.009
  15. M. Puente Siller, D. C. Fuentes Aceituno, J. F. Nava Alonso, 2014 : Study of thiosulfate leaching of silver sulfide in the presence of EDTA and sodium citrate. Effect of NaOH and $NH_4OH$. Hydrometallurgy, 149, pp. 1-11. https://doi.org/10.1016/j.hydromet.2014.06.004
  16. Feng, D., van Deventer, J. S. J., 2010 : Thiosulphate leaching of gold in the presence of ethylenediaminetetraacetic acid (EDTA). Minerals Engineering, 23(2), pp. 143-150. https://doi.org/10.1016/j.mineng.2009.11.009
  17. Kumar, Jha Manis, Jae-chun, Lee, Min-seuk, Kim, Jinki, Jeong, Byung-Su, Kim, Vinay, Kumar, 2013 : Hydrometallurgical recovery/recycling of platinum by the leaching of spent catalysts: A review. Hydrometallurgy, 133, pp. 23-32. https://doi.org/10.1016/j.hydromet.2012.11.012
  18. Tremblay, L., Deschgnes, G., Ghali, E., McMullen, J., 1996 : Gold recovery from a sulphide bearing gold ore by percolation leaching with thiourea. Int. J. Miner. Process., 48, pp. 225-244. https://doi.org/10.1016/S0301-7516(96)00029-4
  19. Jing-ying, L., Xiu-li, X., Wen-quan, L., 2012 : Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones. Waste Management, 32(6), pp. 1209-1212. https://doi.org/10.1016/j.wasman.2012.01.026
  20. Eksteen, J. J., Oraby, E. A., 2015: The leaching and adsorption of gold using low concentration amino acids and hydrogen peroxide: Effect of catalytic ions, sulphide minerals and amino acid type. Minerals Engineering, 70, pp. 36-42. https://doi.org/10.1016/j.mineng.2014.08.020
  21. Bin, Xu, Yongbin, Yang, Qian, Li, Wei, Yin, Tao, Jiang, Guanghui, Li, 2016 : Thiosulfate leaching of Au, Ag and Pd from a high Sn, Pb and Sb bearing decopperized anode slime. Hydrometallurgy, 164, pp. 278-287. https://doi.org/10.1016/j.hydromet.2016.06.011
  22. Li, Dong, Guo, Xueyi, Xu, Zhipeng, Tian, Qinghua, Feng, Qiming, 2015 : Leaching behavior of metals from copper anode slime using an alkali fusion-leaching process. Hydrometallurgy, 157, pp. 9-12. https://doi.org/10.1016/j.hydromet.2015.07.008
  23. Weifeng, Liu, Tianzu, Yang, Duchao, Zhang, Lin, Chen, Younian, Liu, 2014 : Pretreatment of copper anode slime with alkaline pressure oxidative leaching. International Journal of Mineral Processing, 128, pp. 48-54. https://doi.org/10.1016/j.minpro.2014.03.002
  24. Omer, Yavuz, Recep, Ziyadanogullari, 2000 : Recovery of Gold and Silver from Copper Anode Slime. Separation Science and Technology, 35(1), pp. 133-141. https://doi.org/10.1081/SS-100100147
  25. Balaz, P., 2003: Mechanical activation in hydrometallurgy. International Journal of Mineral Processing, 72(1-4), pp. 341-354. https://doi.org/10.1016/S0301-7516(03)00109-1
  26. Jana, Ficeriova, Peter, Balaz, Carlos, Leon Villachica, 2005 : Thiosulfate leaching of silver, gold and bismuth from a complex sulfide concentrates. Hydrometallurgy, 77(1-2), pp. 35-39. https://doi.org/10.1016/j.hydromet.2004.09.010
  27. Ficeriova, Jana, Balaz, Peter, Gock, Eberhard, 2011 : Leaching of gold, silver and accompanying metals from circuit boards (PCBs) waste. Acta Montanistica Slovaca, 16(2), pp. 128-131.
  28. Oncel, M. Salim, İnce, Mahir, Bayramoglu, Mahmut, 2005 : Leaching of silver from solid waste using ultrasound assisted thiourea method. Ultrasonics Sonochemistry, 12(3), pp. 237-242. https://doi.org/10.1016/j.ultsonch.2003.10.007
  29. Jun, Chang, Erdong, Zhang, Libo, Zhang, Jinhui, Peng, Junwen, Zhou, C., Srinivasakannan, Changjiang, Yang, 2017 : A comparison of ultrasound-augmented and conventional leaching of silver from sintering dust using acidic thiourea. Ultrasonics Sonochemistry, 34, pp. 222-231. https://doi.org/10.1016/j.ultsonch.2016.05.038
  30. Sayan, Enes, Bayramoglu, Mahmut, 2004 : Statistical modeling and optimization of ultrasound-assisted sulfuric acid leaching of $TiO_2$ from red mud. Hydrometallurgy, 71(3-4), pp. 397-401. https://doi.org/10.1016/S0304-386X(03)00113-0
  31. Y. Yazici, E. H. Deveci, 2013 : Extraction of metals from waste printed circuit boards (WPCBs) in $H_2SO_4-CuSO_4$-NaCl solutions. Hydrometallurgy, 139, pp. 30-38. https://doi.org/10.1016/j.hydromet.2013.06.018
  32. Y. Yazici, E. H. Deveci, 2015 : Cupric chloride leaching ($HCl-CuCl_2-NaCl$) of metals from waste printed circuit boards (WPCBs). International Journal of Mineral Processing, 134, pp. 89-96. https://doi.org/10.1016/j.minpro.2014.10.012
  33. Yoo, Kyoungkeun, Lee, Jaechun, Lee, Kwangsek, Kim, Byungsu, Kim, Minseuk, Kim, Sookyoung, Pandey, B. D., 2012 : Recovery of Sn, Ag and Cu from Waste Pb-Free Solder Using Nitric Acid Leaching. Materials Transactions, 53(12), pp. 2175-2180. https://doi.org/10.2320/matertrans.M2012268
  34. Aylmore, M. G., Muir, D. M., 2001 : Thiosulfate Leaching of Gold--A Review. Minerals Engineering, 14(2), pp. 135-174. https://doi.org/10.1016/S0892-6875(00)00172-2

Cited by

  1. 귀금속 농축을 위한 PCB 기반 양극동의 전해정련 특성 vol.27, pp.5, 2017, https://doi.org/10.7844/kirr.2018.27.5.14
  2. A Review on the Recovery of Noble Metals from Anode Slimes vol.41, pp.2, 2020, https://doi.org/10.1080/08827508.2019.1575211
  3. Metallurgical Process for Total Recovery of All Constituent Metals from Copper Anode Slimes: A Review of Established Technologies and Current Progress vol.27, pp.7, 2021, https://doi.org/10.1007/s12540-020-00716-7
  4. Metallurgical Process for Total Recovery of All Constituent Metals from Copper Anode Slimes: A Review of Established Technologies and Current Progress vol.27, pp.7, 2021, https://doi.org/10.1007/s12540-020-00716-7