DOI QR코드

DOI QR Code

Caloric Restriction-Induced Extension of Chronological Lifespan Requires Intact Respiration in Budding Yeast

  • Kwon, Young-Yon (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Sung-Keun (Department of Pharmacology, College of Medicine, Inha University) ;
  • Lee, Cheol-Koo (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
  • 투고 : 2016.11.16
  • 심사 : 2017.04.07
  • 발행 : 2017.04.30

초록

Caloric restriction (CR) has been shown to extend lifespan and prevent cellular senescence in various species ranging from yeast to humans. Many effects of CR may contribute to extend lifespan. Specifically, CR prevents oxidative damage from reactive oxygen species (ROS) by enhancing mitochondrial function. In this study, we characterized 33 single electron transport chain (ETC) gene-deletion strains to identify CR-induced chronological lifespan (CLS) extension mechanisms. Interestingly, defects in 17 of these 33 ETC gene-deleted strains showed loss of both respiratory function and CR-induced CLS extension. On the contrary, the other 16 respiration-capable mutants showed increased CLS upon CR along with increased mitochondrial membrane potential (MMP) and intracellular adenosine triphosphate (ATP) levels, with decreased mitochondrial superoxide generation. We measured the same parameters in the 17 non-respiratory mutants upon CR. CR simultaneously increased MMP and mitochondrial superoxide generation without altering intracellular ATP levels. In conclusion, respiration is essential for CLS extension by CR and is important for balancing MMP, ROS, and ATP levels.

키워드

참고문헌

  1. Barros, M.H., Bandy, B., Tahara, E.B., and Kowaltowski, A.J. (2004). Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J. Biol. Chem. 279, 49883-49888. https://doi.org/10.1074/jbc.M408918200
  2. Choi, K.M., Kwon, Y.Y., and Lee, C.K. (2013). Characterization of global gene expression during assurance of lifespan extension by caloric restriction in budding yeast. Exp. Gerontol. 48, 1455-1468. https://doi.org/10.1016/j.exger.2013.10.001
  3. Choi, K.M., Kwon, Y.Y., and Lee, C.K. (2015). Disruption of Snf3/Rgt2 glucose sensors decreases lifespan and caloric restriction effectiveness through Mth1/Std1 by adjusting mitochondrial efficiency in yeast. FEBS Lett. 589, 349-357. https://doi.org/10.1016/j.febslet.2014.12.020
  4. Hamanaka, R.B., and Chandel, N.S. (2009). Mitochondrial reactive oxygen species regulate hypoxic signaling. Curr. Opin. Cell Biol. 21, 894-899. https://doi.org/10.1016/j.ceb.2009.08.005
  5. Harman, D. (1972). The biologic clock: the mitochondria? J. Am. Geriatrics Soc. 20, 145-147. https://doi.org/10.1111/j.1532-5415.1972.tb00787.x
  6. Korshunov, S.S., Skulachev, V.P., and Starkov, A.A. (1997). High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416, 15-18. https://doi.org/10.1016/S0014-5793(97)01159-9
  7. Kurihara, Y., Kanki, T., Aoki, Y., Hirota, Y., Saigusa, T., Uchiumi, T., and Kang, D. (2012). Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast. J. Biol. Chem. 287, 3265-3272. https://doi.org/10.1074/jbc.M111.280156
  8. Kwon, Y.Y., Choi, K.M., Cho, C., and Lee, C.K. (2015). Mitochondrial-dependent viability of Saccharomyces cerevisiae mutants carrying individual electron transport chain component deletions. Mol. Cells 38, 1054-1063. https://doi.org/10.14348/molcells.2015.0153
  9. Lanza, I.R., Zabielski, P., Klaus, K.A., Morse, D.M., Heppelmann, C.J., Bergen, H.R., 3rd, Dasari, S., Walrand, S., Short, K.R., Johnson, M.L., et al. (2012). Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab.16, 777-788. https://doi.org/10.1016/j.cmet.2012.11.003
  10. Lee, Y.L., and Lee, C.K. (2008). Transcriptional response according to strength of calorie restriction in Saccharomyces cerevisiae. Mol. Cells 26, 299-307.
  11. Lin, S.J., Kaeberlein, M., Andalis, A.A., Sturtz, L.A., Defossez, P.A., Culotta, V.C., Fink, G.R., and Guarente, L. (2002). Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418, 344-348. https://doi.org/10.1038/nature00829
  12. Lo, T., Ho, J.H., Yang, M.H., and Lee, O.K. (2011). Glucose reduction prevents replicative senescence and increases mitochondrial respiration in human mesenchymal stem cells. Cell Transplant. 20, 813-825. https://doi.org/10.3727/096368910X539100
  13. Martin-Montalvo, A., and de Cabo, R. (2013). Mitochondrial metabolic reprogramming induced by calorie restriction. Antioxid. Redox. Signal. 19, 310-320. https://doi.org/10.1089/ars.2012.4866
  14. Newmeyer, D.D., and Ferguson-Miller, S. (2003). Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112, 481-490. https://doi.org/10.1016/S0092-8674(03)00116-8
  15. Nisoli, E., Tonello, C., Cardile, A., Cozzi, V., Bracale, R., Tedesco, L., Falcone, S., Valerio, A., Cantoni, O., Clementi, E., et al. (2005). Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310, 314-317. https://doi.org/10.1126/science.1117728
  16. Ocampo, A., Liu, J., Schroeder, E.A., Shadel, G.S., and Barrientos, A. (2012). Mitochondrial respiratory thresholds regulate yeast chronological life span and its extension by caloric restriction. Cell Metab. 16, 55-67. https://doi.org/10.1016/j.cmet.2012.05.013
  17. Oliveira, G.A., Tahara, E.B., Gombert, A.K., Barros, M.H., and Kowaltowski, A.J. (2008). Increased aerobic metabolism is essential for the beneficial effects of caloric restriction on yeast life span. J. Bioenerg. Biomembr. 40, 381-388. https://doi.org/10.1007/s10863-008-9159-5
  18. Pagliarini, D.J., Wiley, S.E., Kimple, M.E., Dixon, J.R., Kelly, P., Worby, C.A., Casey, P.J., and Dixon, J.E. (2005). Involvement of a mitochondrial phosphatase in the regulation of ATP production and insulin secretion in pancreatic beta cells. Mol. Cell 19, 197-207. https://doi.org/10.1016/j.molcel.2005.06.008
  19. Phillips, J.D., Schmitt, M.E., Brown, T.A., Beckmann, J.D., and Trumpower, B.L. (1990). Isolation and characterization of QCR9, a nuclear gene encoding the 7.3-kDa subunit 9 of the Saccharomyces cerevisiae ubiquinol-cytochrome c oxidoreductase complex. An intron-containing gene with a conserved sequence occurring in the intron of COX4. J. Biol. Chem. 265, 20813-20821.
  20. Pozniakovsky, A.I., Knorre, D.A., Markova, O.V., Hyman, A.A., Skulachev, V.P., and Severin, F.F. (2005). Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. J. Cell Biol. 168, 257-269. https://doi.org/10.1083/jcb.200408145
  21. Schulz, T.J., Zarse, K., Voigt, A., Urban, N., Birringer, M., and Ristow, M. (2007). Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 6, 280-293. https://doi.org/10.1016/j.cmet.2007.08.011
  22. Scialo, F., Mallikarjun, V., Stefanatos, R., and Sanz, A. (2013). Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species-dependent and reactive oxygen speciesindependent mechanisms. Antioxid. Redox Signal. 19, 1953-1969. https://doi.org/10.1089/ars.2012.4900
  23. Turrens, J.F. (2003). Mitochondrial formation of reactive oxygen species. J. Physiol. 552, 335-344. https://doi.org/10.1113/jphysiol.2003.049478

피인용 문헌

  1. Elixir of Life vol.122, pp.1, 2018, https://doi.org/10.1161/CIRCRESAHA.117.311866
  2. The Energy Maintenance Theory of Aging: Maintaining Energy Metabolism to Allow Longevity vol.40, pp.8, 2018, https://doi.org/10.1002/bies.201800005
  3. Physiological and Transcriptomic Analysis of a Chronologically Long-Lived Saccharomyces cerevisiae Strain Obtained by Evolutionary Engineering vol.60, pp.7, 2018, https://doi.org/10.1007/s12033-018-0087-2
  4. Mitochondrial energy metabolism is required for lifespan extension by the spastic paraplegia-associated protein spartin vol.4, pp.12, 2017, https://doi.org/10.15698/mic2017.12.603
  5. Mitochondrial protein sulfenation during aging in the rat brain vol.4, pp.2, 2018, https://doi.org/10.1007/s41048-018-0053-3
  6. A pH probe inhibits senescence in mesenchymal stem cells vol.9, pp.1, 2018, https://doi.org/10.1186/s13287-018-1081-0
  7. Autophagy-induced senescence is regulated by p38α signaling vol.10, pp.6, 2017, https://doi.org/10.1038/s41419-019-1607-0
  8. Long-Living Budding Yeast Cell Subpopulation Induced by Ethanol/Acetate and Respiration vol.75, pp.8, 2020, https://doi.org/10.1093/gerona/glz202
  9. Ouabain and chloroquine trigger senolysis of BRAF‐V600E‐induced senescent cells by targeting autophagy vol.20, pp.9, 2021, https://doi.org/10.1111/acel.13447