DOI QR코드

DOI QR Code

Development and Application of Rubric for Assessing Nature of Technology in the Context of Socioscientific Issues

과학기술관련 사회쟁점에 대한 의사결정에서 나타나는 NOT 이해 수준의 평가를 위한 루브릭 개발 및 적용

  • Received : 2017.02.24
  • Accepted : 2017.04.05
  • Published : 2017.04.30

Abstract

Current science education aims to guide students as future responsible citizens to make informed decisions on socioscientific issues (SSI). In the authors' previous study, it was found that conceptions of nature of technology (NOT) were explicitly represented in various contexts of SSI with differentiated levels of understanding, and cases of the informed NOT understanding included the key features of well-reasoned SSI decision-making. Therefore, enhancing NOT understanding could be one of the elements to leverage students' informed SSI decision-making. In this study, we developed a rubric to assess NOT understanding in the context of SSI and applied it to evaluate the impact of SSI instruction. Participants were 58 college students who took an SSI course for 6 weeks. Before and after the SSI course, they were asked to write decision-making essays on the Golden Rice issue (a type of genetically modified food). As a result of analyzing the pre- and post decision-making essay using the rubric, it was found that NOT understanding was improved after the SSI course; in addition, the salient patterns of NOT changes were analyzed in detail in order to gauge the influence of the SSI classes. Implications for science education were discussed.

과학기술관련 사회쟁점(SSI) 교육은 다양한 영역에서 긍정적 효과를 보여주고 있는데, 학생들이 책임 있는 미래 사회 시민으로 합리적인 SSI 의사결정을 할 수 있도록 안내하는 것을 주요 목표로 한다. 저자의 선행연구에서 기술의 본성(NOT) 요소가 SSI 맥락에서 명시적으로 나타날 뿐 아니라 NOT 이해 수준이 높은 경우가 좋은 SSI 의사결정의 특징과 겹친다는 결과를 얻었다. 따라서 NOT 이해의 수준은 SSI 의사결정의 질을 가늠하는데 도움을 줄 수 있다. 본 연구에서는 SSI 의사결정에서 NOT 이해 수준을 평가하기 위한 루브릭을 제안하였다. 또한, 이 루브릭을 활용하여 SSI 수업 전후에 나타나는 NOT 변화를 탐색하였다. 연구 참여자는 58명의 대학생으로 SSI 수업을 6주간(주 1회 105분) 수강하였다. 자료 수집을 위하여 SSI 수업 전후로 대학생들에게 황금쌀(유전자재조합식품의 일종)에 관련된 지문을 읽고 의사결정 글쓰기를 작성하도록 하였다. 학생들의 황금쌀관련 의사결정에서 NOT 이해 정도를 평가하고 분석하기 위하여 개발한 루브릭은 저자의 선행연구에서 제시한 NOT 개념틀(기술의 양태를 드러내는 '인공물', '지식', '실행', '시스템' 차원에 각 3개의 하위요소를 포함하여 총 12개의 요소를 가짐)을 기반으로 하였다. 더욱이 NOT 이해 수준을 구분하기 위하여 두 가지 기준을 도입하였다. 학생들이 얼마나 많은 NOT 요소를 파악하는지와 주어진 지문의 맥락에 맞추어 근거를 제시하는지가 해당 기준이다. 결국 NOT 요소를 인식하지 못하거나 잘못 이해하는 경우가 '수준0' 이고, 주어진 지문에 명시적으로 제시되지 않은 NOT 요소를 폭넓게 제시하면서 다양하고 구체적인 정보와 근거를 제안하는 경우는 '수준3' 으로 전체 4 단계로 구분하였다. 연구결과로 학생들의 SSI 의사결정에 NOT 요소가 명시적으로 나타나고 이해 수준은 다양하게 분포하였다. 또한, SSI 수업 후 NOT 이해 수준이 향상된 것으로 나타났다. 결론 및 함의에서는 SSI 의사결정에서 NOT 이해의 역할과 SSI 수업의 어떤 측면이 NOT 이해를 향상시켰는지를 추론하여 제시하였다.

Keywords

References

  1. American Association for the Advancement of Science. (1990). Science for all Americans. New York, NY: Oxford University Press.
  2. Albe, V. (2008). When scientific knowledge, daily life experience, epistemological and social considerations intersect: Students' argumentation in group discussions on a socio-scientific issue. Research in Science Education, 38(1), 67-90. https://doi.org/10.1007/s11165-007-9040-2
  3. Allchin, D. (2011). Evaluating knowledge of the nature of (whole) science. Science Education, 95(3), 518-542. https://doi.org/10.1002/sce.20432
  4. Bell, R. L., & Lederman, N. G. (2003). Understandings of the nature of science and decision making on science and technology based issues. Science Education, 87(3), 352-377. https://doi.org/10.1002/sce.10063
  5. Bennett, J., Lubben, F., & Hogarth, S. (2007). Bringing science to life: A synthesis of the research evidence on the effects of context-based and STS approaches to science teaching. Science Education, 91(3), 347-370. https://doi.org/10.1002/sce.20186
  6. Dagher, Z. R., & Erduran, S. (2016). Reconceptualizing the nature of science for science education: Why does it matter?. Science & Education, 25(1), 147-164. https://doi.org/10.1007/s11191-015-9800-8
  7. Khishfe, R. (2012). Nature of Science and Decision-Making. International Journal of Science Education, 34(1), 67-100. https://doi.org/10.1080/09500693.2011.559490
  8. Ratcliffe, M. (1997). Pupil decision-making about socio-scientific issues within the science curriculum. International Journal of Science Education, 19(2), 167-182. https://doi.org/10.1080/0950069970190203
  9. Eastwood, J. L., Sadler, T. D., Zeidler, D. L., Lewis, A., Amiri, L., & Applebaum, S. (2012). Contextualizing nature of science instruction in socioscientific issues. International Journal of Science Education, 34(15), 2289-2315. https://doi.org/10.1080/09500693.2012.667582
  10. Fleming, R. (1986a). Adolescent reasoning in socio-scientific issues part I: Social cognition. Journal of Research in Science Teaching, 23(8), 677-687. https://doi.org/10.1002/tea.3660230803
  11. Fleming, R. (1986b). Adolescent reasoning in socio-scientific issues part II: Nonsocial cognition. Journal of Research in Science Teaching, 23(8), 689-698. https://doi.org/10.1002/tea.3660230804
  12. Grace, M. M., & Ratcliffe, M. (2002). The science and values that young people draw upon to make decisions about biological conservation issues. International Journal of Science Education, 24(11), 1157-1169. https://doi.org/10.1080/09500690210134848
  13. Harris, R., & Ratcliffe, M. (2005). Socio-scientific issues and the quality of exploratory talk-what can be learned from schools involved in a 'collapsed day' project?. The Curriculum Journal, 16(4), 439-453. https://doi.org/10.1080/09585170500384396
  14. Hodson, D. (2003). Time for action: Science education for an alternative future. International Journal of Science Education, 25(6), 645-670. https://doi.org/10.1080/09500690305021
  15. International Technology Education Association. (1996). Technology for all Americans: A rationale and structure for the study of technology. International Technology Education Association.
  16. International Technology Education Association. (2007). Standards for technological literacy: Content for the study of technology. International Technology Education Association.
  17. Irzik, G., & Nola, R. (2011). A family resemblance approach to the nature of science. Science & Education, 20, 591-607. https://doi.org/10.1007/s11191-010-9293-4
  18. Irzik, G., & Nola, R. (2014). New directions for nature of science research. In M. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 999-1021). Dordrecht: Springer.
  19. Khishfe, R. (2012). Nature of science and decision-making. International Journal of Science Education, 34(1), 67-100. https://doi.org/10.1080/09500693.2011.559490
  20. Khishfe, R., & Lederman, N. G. (2006). Teaching nature of science within a controversial topic: Integrated versus non-integrated. Journal of Research in Science Teaching, 43, 395-318. https://doi.org/10.1002/tea.20137
  21. Klosterman, M. L., & Sadler, T. D. (2010). Multi-level assessment of scientific content knowledge gains associated with socioscientific issues-based instruction. International Journal of Science Education, 32(8), 1017-1043. https://doi.org/10.1080/09500690902894512
  22. Kolsto, S. D. (2006). Patterns in students' argumentation confronted with a risk-focused socio-scientific issue. International Journal of Science Education, 28(14), 1689-1716. https://doi.org/10.1080/09500690600560878
  23. Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners' conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497-521. https://doi.org/10.1002/tea.10034
  24. Lee, H. (2015). Construction of nature of technology framework and its utilization for investigation of changes in college students' perception of nature of technology through SSI-based program. Unpublished Doctoral Dissertation. Ewha Womans University.
  25. Lee, H., Chang, H., Choi, K., Kim, S. W., & Zeidler, D. L. (2012). Developing character and values for global citizens: Analysis of pre-service science teachers' moral reasoning on socioscientific issues. International Journal of Science Education, 34(6), 925-953. https://doi.org/10.1080/09500693.2011.625505
  26. Lee, H. & Lee, H. (2015). Analysis of students' socioscientific decision-making from the nature of technology perspectives. Journal of the Korean Association for Research in Science Education, 35(1), 169-177. https://doi.org/10.14697/jkase.2015.35.1.0169
  27. Lee, H. & Lee, H. (2016a). Changes of College Students' Perception on Nature of Technology through SSI-based Programs. Journal of Learner-Centered Curriculum and Instruction, 16(10), 961-985. https://doi.org/10.22251/jlcci.2016.16.10.961
  28. Lee, H. & Lee, H. (2016b). Contextualized nature of technology in socioscientific issues. Journal of the Korean Association for Research in Science Education, 36(2), 303-315. https://doi.org/10.14697/jkase.2016.36.2.0303
  29. National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
  30. Pacey, A. (1983). The culture of technology. Cambridge, MA: MIT press.
  31. Ratcliffe, M. (1997). Pupil decision-making about socio-scientific issues within the science curriculum. International Journal of Science Education, 19(2), 167-182. https://doi.org/10.1080/0950069970190203
  32. Roberts, D. A., & Bybee, R. W. (2014). Scientific literacy, science literacy, and science education. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (Volume II), (pp. 545-558). New York, NY: Routledge.
  33. Rossouw, A., Hacker, M., & de Vries, M. J. (2011). Concepts and contexts in engineering and technology education: An international and interdisciplinary Delphi study. International Journal of Technology and Design Education, 21(4), 409-424. https://doi.org/10.1007/s10798-010-9129-1
  34. Sadler, T. D., Barab, S., & Scott, B. (2007). What do students gain by engaging in socioscientific Inquiry?. Research in Science Education, 37(4), 371-391. https://doi.org/10.1007/s11165-006-9030-9
  35. Sadler, T. D., Chambers, F. W., & Zeidler, D. L. (2004). Student conceptualizations of the nature of science in response to a socioscientific issue. International Journal of Science Education, 26(4), 387-409. https://doi.org/10.1080/0950069032000119456
  36. Sadler, T. D., & Zeidler, D. L. (2004). The morality of socioscientific issues: Construal and resolution of genetic engineering dilemmas. Science Education, 88(1), 4-27. https://doi.org/10.1002/sce.10101
  37. Sadler, T. D., & Zeidler, D. L. (2005a). Patterns of informal reasoning in the context of socioscientific decision making. Journal of Research in Science Teaching, 42(1), 112-138. https://doi.org/10.1002/tea.20042
  38. Sadler, T. D., & Zeidler, D. L. (2005b). The significance of content knowledge for informal reasoning regarding socioscientific issues: Applying genetics knowledge to genetic engineering issues. Science Education, 89(1), 71-93. https://doi.org/10.1002/sce.20023
  39. Sadler, T. D., Barab, S., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry?. Research in Science Education, 37(4), 371-391. https://doi.org/10.1007/s11165-006-9030-9
  40. Sadler, T. D., Chambers, F. W., & Zeidler, D. L. (2004). Student conceptualizations of the nature of science in response to a socioscientific issue. International Journal of Science Education, 26(4), 387-409. https://doi.org/10.1080/0950069032000119456
  41. Walker, K. A., & Zeidler, D. L. (2007). Promoting discourse about socioscientific issues through scaffolded inquiry. International Journal of Science Education, 29(11), 1387-1410. https://doi.org/10.1080/09500690601068095
  42. Zeidler, D. L. (2014). Socioscientific issues as a curriculum emphasis: Theory, research and practice. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education, Volume II (pp. 697-726). New York, NY: Routledge.
  43. Zeidler, D. L., & Nichols, B. H. (2009). Socioscientific issues: Theory and practice. Journal of Elementary Science Education, 21(2), 49-58. https://doi.org/10.1007/BF03173684
  44. Zeidler, D. L., Sadler, T. D., Applebaum, S., & Callahan, B. E. (2009). Advancing reflective judgment through socioscientific issues. Journal of Research in Science Teaching, 46(1), 74-101. https://doi.org/10.1002/tea.20281
  45. Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based framework for socioscientific issues education. Science Education, 89(3), 357-377. https://doi.org/10.1002/sce.20048
  46. Zeidler, D. L., Walker, K. A., Ackett, W. A., & Simmons, M. L. (2002). Tangled up in views: Beliefs in the nature of science and responses to socioscientific dilemmas. Science Education, 86(3), 343-367. https://doi.org/10.1002/sce.10025
  47. Zohar, A., & Nemet, F. (2002). Fostering students' knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35-62. https://doi.org/10.1002/tea.10008