References
- AISC-ASD (1989), American Institute of Steel Construction-Allowable Stress Design; Manual of Steel Construction, (9th Ed.), Chicago, IL, USA.
- AISC-LRFD (2001), American Institute of Steel Construction-Load and Resistance Factor Design; Manual of steel construction, Chicago, IL, USA.
- ANSYS Incorporated (2006), ANSYS Release 10.0.
- Artar, M. and Daloglu, A.T. (2015), "Optimum design of composite steel frames with semi-rigid connections and column bases via genetic algorithm", Steel Compos. Struct., Int. J., 19(4), 1035-1053. https://doi.org/10.12989/scs.2015.19.4.1035
- ASCE 7-05 (2005), Minimum design loads for building and other structures.
- Aydin, E., Sonmez, M. and Karabork, T. (2015), "Optimal placement of elastic steel diagonal braces using artificial bee colony algorithm", Steel Compos. Struct., Int. J., 19(2), 349-368. https://doi.org/10.12989/scs.2015.19.2.349
- Camp, C.V., Bichon, B.J. and Stovall, S.P. (2005), "Design of steel frames using ant colony optimization", J. Struct. Eng., 131(3), 369-379. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(369)
- Degertekin, S.O. (2008), "Optimum design of steel frames using harmony search algorithm", Struct. Multidisc. Optim., 36(4), 393-401. https://doi.org/10.1007/s00158-007-0177-4
- Gholizadeh, S. and Fattahi, F. (2014), "Design optimization of tall steel buildings by a modified particle swarm algorithm", Struct. Des. Tall Spec. Buil., 23(4), 285-301. https://doi.org/10.1002/tal.1042
- Gholizadeh, S. and Barati, H. (2014), "Topology optimization of nonlinear single layer domes by a new metaheuristic", Steel Compos. Struct., Int. J., 16(6), 681-701. https://doi.org/10.12989/scs.2014.16.6.681
- Gholizadeh, S. and Poorhoseini, H. (2015), "Optimum design of steel frame structures by a modified dolphin echolocation algorithm", Struct. Eng. Mech., Int. J., 55(3), 535-554. https://doi.org/10.12989/sem.2015.55.3.535
- Hasancebi, O., Bahcecioglu, T., Kurc, O. and Saka, M.P. (2011), "Optimum design of high-rise steel buildings using an evolution strategy integrated parallel algorithm", Comput. Struct., 89(21), 2037-2051. https://doi.org/10.1016/j.compstruc.2011.05.019
- Kaveh, A. and Bakhshpoori, T. (2015), "Subspace search mechanism and cuckoo search algorithm for size optimization of space trusses", Steel Compos. Struct., Int. J., 18(2), 289-303. https://doi.org/10.12989/scs.2015.18.2.289
- Kaveh, A. and Farhoudi, N. (2013), "A new optimization method: Dolphin echolocation", Adv. Eng. Softw., 59, 53-70 https://doi.org/10.1016/j.advengsoft.2013.03.004
- Kaveh, A. and Shokohi, F. (2015), "Optimum design of laterallysupported castellated beams using CBO algorithm", Steel Compos. Struct., Int. J., 18(2), 305-324. https://doi.org/10.12989/scs.2015.18.2.305
- Kaveh, A. and Talatahari, S. (2010), "An improved ant colony optimization for the design of planar steel frames", Eng. Struct., 32(3), 864-873. https://doi.org/10.1016/j.engstruct.2009.12.012
- Lamberti, L. and Pappalettere, C. (2011), "Metaheuristic design optimization of skeletal structures: a review", Comput. Technol. Rev., 4(1), 1-32.
- MATLAB (2006), The language of technical computing; The Math Works. [Software]
- Mirjalili, S. (2015), "Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm", Knowl.-Based. Syst., 89, 228-249. https://doi.org/10.1016/j.knosys.2015.07.006
- Pezeshk, S., Camp, C.V. and Chen, D. (2000), "Design of nonlinear framed structures using genetic algorithms", J. Struct. Eng., 126(3), 382-388. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(382)
- Rafiee, A., Talatahari, S. and Hadidi, A. (2013), "Optimum design of steel frames with semi-rigid connections using Big Bang-Big Crunch method", Steel Compos. Struct., Int. J., 14(5), 431-451. https://doi.org/10.12989/scs.2013.14.5.431
- Talatahari, S., Gandomi, A.H., Yang, X.S. and Deb, S. (2015), "Optimum design of frame structures using the eagle strategy with differential evolution", Eng. Struct., 91, 16-25. https://doi.org/10.1016/j.engstruct.2015.02.026
- Togan, V. (2012), "Design of planar steel frames using teaching-learning based optimization", Eng. Struct., 34, 225-232. https://doi.org/10.1016/j.engstruct.2011.08.035
Cited by
- An efficient hybrid of elephant herding optimization and cultural algorithm for optimal design of trusses pp.1435-5663, 2018, https://doi.org/10.1007/s00366-018-0631-5
- A Comparison between different techniques for optimum design of steel frames subjected to blast vol.15, pp.9, 2018, https://doi.org/10.1590/1679-78254952
- Truss structure damage identification using residual force vector and genetic algorithm vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.485
- Performance based design optimum of CBFs using bee colony algorithm vol.27, pp.5, 2017, https://doi.org/10.12989/scs.2018.27.5.613
- Structural damage detection based on MAC flexibility and frequency using moth-flame algorithm vol.70, pp.6, 2017, https://doi.org/10.12989/sem.2019.70.6.649
- Rao-3 algorithm for the weight optimization of reinforced concrete cantilever retaining wall vol.20, pp.6, 2017, https://doi.org/10.12989/gae.2020.20.6.527