참고문헌
- Alesadi, A., Galehdari, M. and Shojaee, S. (2017), "Free vibration and buckling analysis of cross-ply laminated composite plates using Carrera's unified formulation based on Isogeometric approach", Comput. Struct., 183, 38-47. https://doi.org/10.1016/j.compstruc.2017.01.013
- Anjana, R., Sharma, S. and Bansal, A. (2016), "Molecular dynamics simulation of carbon nanotube reinforced polythylene composites", J. Compos. Mater. DOI: 10.1177/0021998316674264
- Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R. and Sadeghi, F. (2014), "Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams", Compos. Struct., 113, 316-327. https://doi.org/10.1016/j.compstruct.2014.03.015
- Azrar, L., Benamar, R. and White, R.G. (1999), "A semi-analytical approach to the nonlinear dynamic response problem of S-S and C-C beams at large vibration amplitudes, part I: General theory and application to the single mode approach to free and forced vibration analysis", J. Sound Vib., 224(2), 183-207. https://doi.org/10.1006/jsvi.1998.1893
- Bagdatli, S.M. (2015a), "Non-linear vibration of nanobeams with various boundary condition based on nonlocal elasticity theory", Compos. Part B: Eng., 80, 43-52. https://doi.org/10.1016/j.compositesb.2015.05.030
- Bagdatli, S.M. (2015b), "Non-linear transverse vibrations of tensioned nanobeams using nonlocal beam theory", Struct. Eng. Mech., Int. J., 55(2), 281-298. https://doi.org/10.12989/sem.2015.55.2.281
- Bayat, M., Pakar, I. and Emadi, A. (2013), "Vibration of electrostatically actuated microbeam by means of homotopy perturbation method", Struct. Eng. Mech., Int. J., 48(6), 823-831. https://doi.org/10.12989/sem.2013.48.6.823
- Biswal, M., Sahu, S.K. and Asha, A.V. (2016), "Vibration of composite cylindrical shallow shells subjected to hygrothermal loading-experimental and numerical results", Compos. Part B: Eng., 98, 108-119. https://doi.org/10.1016/j.compositesb.2016.05.037
- Cadec, M., Coleman, J.N., Barron, V., Hedicke, K. and Blau, W.J. (2002), "Morphological and mechanical properties of carbonnanotube-reinforced semicrystalline and amorphous polymer composites", Appl. Phys. Lett., 81(27), 5123-5125. https://doi.org/10.1063/1.1533118
- Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: potential and current challenges", Mater. Des., 28(9), 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022
- Fiedler, B., Gojny, F.H., Wichmann, M.H.G., Notle, M.C.M. and Schulte. K. (2006), "Fundamental aspects of nano-reinforced composites", Compos. Sci. Technol., 66(16), 3115-3125. https://doi.org/10.1016/j.compscitech.2005.01.014
- Formica, G., Lacarbonara, W. and Alessi, R. (2010), "Vibrations of carbon nanotube-reinforced composites", J. Sound Vib., 329(10), 1875-1889. https://doi.org/10.1016/j.jsv.2009.11.020
- Ghorbani Shenas, A., Malekzadeh, P. and Ziaee, S. (2017), "Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment", Compos. Struct., 162, 325-340. https://doi.org/10.1016/j.compstruct.2016.12.009
- Han, Y. and Elliot, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011
- He, J.H. (1999), "Variational iteration method-a kind of non-linear analytical technique: some examples", Int. J. Non-Linear Mech., 34(4), 699-708. https://doi.org/10.1016/S0020-7462(98)00048-1
- He, J.H. (2007), "Variational iteration method-Some recent results and new interpretations", J. Comput. Appl. Math., 207(1), 3-17. https://doi.org/10.1016/j.cam.2006.07.009
- Heydarpour, Y., Aghdam, M.M. and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200. https://doi.org/10.1016/j.compstruct.2014.06.023
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0
- Javanmard, M., Bayat, M. and Ardakani, A. (2013), "Nonlinear vibration of Euler-Bernoulli beams resting on linear elastic foundation", Steel Compos. Struct., Int. J., 15(4), 439-449. https://doi.org/10.12989/scs.2013.15.4.439
- Jooybar, N., Malekzadeh, P. and Fiouz, A. (2016), "Vibration of functionally graded carbon nanotubes reinforced composite truncated conical panels with elastically restrained against rotation edges in thermal environment", Compos. Part B: Eng., 106, 242-261. https://doi.org/10.1016/j.compositesb.2016.09.030
- Ke, L.L., Yang, J. and Kitipornchai, S. (2010a), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92(3), 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024
- Ke, L.L., Yang, J. and Kitipornchai, S. (2010b), "An analytical study on the nonlinear vibration of functionally graded beams", Meccanica, 45(6), 743-752. https://doi.org/10.1007/s11012-009-9276-1
- Lai, S.K., Harrington, J., Xiang, Y. and Chow, K.W. (2012), "Accurate analytical perturbation approach for large amplitude vibration of functionally graded beams", Int. J. Non-Linear Mech., 47(5), 473-480. https://doi.org/10.1016/j.ijnonlinmec.2011.09.019
- Lu, X.X. and Hu, Z. (2012), "Mechanical property evaluation of single-walled carbon nanotubes by finite element modeling", Compos. Part B: Eng., 43(4), 1902-1913. https://doi.org/10.1016/j.compositesb.2012.02.002
- Malekzadeh, P. and Dehbozorgi, M. (2016), "Low velocity impact analysis of functionally graded carbon nanotubes reinforced composite skew plates", Compos. Struct., 140, 728-748. https://doi.org/10.1016/j.compstruct.2016.01.045
- Malekzadeh, P. and Heydarpour, Y. (2015), "Mixed Navierlayerwise differential quadrature three-dimensional static and free vibration analysis of functionally graded carbon nanotube reinforced composite laminated plates", Meccanica, 50(1), 143-167. https://doi.org/10.1007/s11012-014-0061-4
- Malekzadeh, P. and Setoodeh, A.R. (2007), "Large deformation analysis of moderately thick laminated plates on nonlinear elastic foundation by DQM", Compos. Struct., 80(4), 569-579. https://doi.org/10.1016/j.compstruct.2006.07.004
- Malekzadeh, P. and Vosoughi, A.R. (2009), "DQM large amplitude vibration of composite beams on nonlinear elastic foundation with restrained edges", Common. Nonlinear Sci. Numer. Simul., 14(3), 906-915. https://doi.org/10.1016/j.cnsns.2007.10.014
- Malekzadeh, P. and Zarei, A.R. (2014), "Free vibration of quadrilateral laminated plates with carbon nanotube reinforced composite layers", Thin-Wall. Struct., 82, 221-232. https://doi.org/10.1016/j.tws.2014.04.016
- Mehrabadi, S.J., Aragh, B.S., Khoshkhahesh, V. and Taherpour, A. (2012), "Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight single-walled carbon nanotubes", Compos. Part B: Eng., 43(4), 2031-2040. https://doi.org/10.1016/j.compositesb.2012.01.067
- Rao, S.S. (2007), Vibration of Continuous Systems, John Wiley and Sons, Hoboken, NJ, USA.
- Sahoo, R. and Singh, B.N. (2014), "A new trigonometric zigzag theory for buckling and free vibration analysis of laminated composite and sandwich plates", Compos. Struct., 117, 316-332. https://doi.org/10.1016/j.compstruct.2014.05.002
- Sedighi, H.M., Shirazi, K.H. and Zare, J. (2012), "An analytic solution of transversal oscillation of quintic non-linear beam with homotopy analysis method", Int. J. Non-Linear Mech., 47(7), 777-784. https://doi.org/10.1016/j.ijnonlinmec.2012.04.008
- Setoodeh, A.R. and Afrahim, S. (2014), "Nonlinear dynamic analysis of FG micro-pipes conveying fluid based on strain gradient theory", Compos. Struct., 116, 128-135. https://doi.org/10.1016/j.compstruct.2014.05.013
- Setoodeh, A.R. and Rezaei, M. (2017a), "Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation", Struct. Eng. Mech., Int. J., 61(2), 209-220. https://doi.org/10.12989/sem.2017.61.2.209
- Setoodeh, A.R. and Rezaei, M. (2017b), "An explicit solution for the size-dependent large amplitude transverse vibration of thin functionally graded micro-plates", Sci. Iran. [In press]
- Setoodeh, A.R. and Shojaee, M. (2016), "Application of TW-DQ method to nonlinear free vibration analysis of FG carbon nanotube-reinforced composite quadrilateral plates", Thin-Wall. Struct., 108, 1-11. https://doi.org/10.1016/j.tws.2016.07.019
- Setoodeh, A.R. and Shojaee, M. (2017), "Critical buckling load optimization of functionally graded carbon-nanotube reinforced laminated composite quadrilateral plates", Polym. Compos. DOI: 10.1002/pc.24289
- Setoodeh, A.R., Rezaei, M. and Zendehdel Shahri, M.R. (2016), "Linear and nonlinear torsional free vibration of functionally graded micro/nano-tubes based on modified couple stress theory", Appl. Math. Mech. Eng. Ed., 37(6), 725-740. https://doi.org/10.1007/s10483-016-2085-6
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
- Sun, C.H., Li, F., Cheng, H.M. and Lu, G.Q. (2005), "Axial Young's modulus prediction of single-walled carbon nanotube arrays with diameters from nanometer to meter scales", Appl. Phys. Lett., 87(19), 193101. https://doi.org/10.1063/1.2119409
- Thostenson, E.T. and Chou, T.W. (2003), "On the elastic properties of carbon nanotube-based composites: Modelling and characterization", J. Phys.-Appl. Phys., 36(5), 573-582. https://doi.org/10.1088/0022-3727/36/5/323
- Thostenson, E.T., Ren, Z.F. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: A review", Compos. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X
- Togun, N. and Bagdatli, S.M. (2016a), "Size dependent nonlinear vibration of the tensioned nanobeam based on the modified couple stress theory", Compos. Part B: Eng., 97, 255-262. https://doi.org/10.1016/j.compositesb.2016.04.074
- Togun, N. and Bagdatli, S.M. (2016b), "Nonlinear vibration of a nanobeam on a Pasternak elastic foundation based on non-local Euler-Bernoulli beam theory", Math. Comput. Appl., 21(1), 3.
- Vodenitcharova, T. and Zhang, L.C. (2006), "Bending and local buckling of a nanocomposite beam reinforced by a singlewalled carbon nanotube", Int. J. Solids Struct., 43(10), 3006-3024. https://doi.org/10.1016/j.ijsolstr.2005.05.014
- Vosoughi, A.R., Malekzadeh, P., Banan, Ma.R. and Banan, Mo.R. (2012), "Thermal buckling and postbuckling of laminated composite beams with temperature-dependent properties", Int. J. Non-Linear Mech., 47(3), 96-102. https://doi.org/10.1016/j.ijnonlinmec.2011.11.009
- Wang, Q., Shi, D. and Liang, Q. (2016), "Free vibration analysis of axially loaded laminated composite beams with general boundary conditions by using a modified Fourier-Ritz approach", J. Compos. Mater., 50(15), 2111-2135. https://doi.org/10.1177/0021998315602138
- Wu, H.L., Yang, J. and Kitipornchai, S. (2016), "Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections", Compos. Part B: Eng., 90, 86-96. https://doi.org/10.1016/j.compositesb.2015.12.007
- Wuite, J. and Adali, S. (2005), "Deflection and stress behaviour of nanocomposite reinforced beams using a multiscale analysis", Compos. Struct., 71(3-4), 388-396. https://doi.org/10.1016/j.compstruct.2005.09.011
- Yas, M.H. and Samadi, N. (2012), "Free vibration and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Vessels Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012
- Yazdi, A.A. (2013), "Homotopy perturbation method for nonlinear vibration analysis of functionally graded plate", J. Vib. Acoust., 135(2), 021012. https://doi.org/10.1115/1.4023252
- Zafarmand, H. and Kadkhodayan, M. (2014), "Nonlinear analysis of functionally graded nanocomposite rotating thick disks with variable thickness reinforced with carbon nanotubes", Aerosp. Sci. Technol., 41, 47-54.
- Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010
피인용 문헌
- The critical buckling load of reinforced nanocomposite porous plates vol.67, pp.2, 2017, https://doi.org/10.12989/sem.2018.67.2.115
- Nonlinear aeroelastic stability analysis of three-phase nano-composite plates vol.47, pp.6, 2017, https://doi.org/10.1080/15397734.2019.1610436
- Nonlinear vibration analysis of carbon nanotube reinforced composite plane structures vol.30, pp.6, 2017, https://doi.org/10.12989/scs.2019.30.6.493
- Free Vibration Analysis of Simply Supported P-FGM Nanoplate Using a Nonlocal Four Variables Shear Deformation Plate Theory vol.69, pp.4, 2017, https://doi.org/10.2478/scjme-2019-0039
- Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle vol.73, pp.2, 2017, https://doi.org/10.12989/sem.2020.73.2.209
- Nonlocal vibration of DWCNTs based on Flügge shell model using wave propagation approach vol.34, pp.4, 2020, https://doi.org/10.12989/scs.2020.34.4.599
- Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns vol.35, pp.2, 2017, https://doi.org/10.12989/scs.2020.35.2.295
- Theoretical impact of Kelvin's theory for vibration of double walled carbon nanotubes vol.8, pp.4, 2017, https://doi.org/10.12989/anr.2020.8.4.307
- Effect of chiral structure for free vibration of DWCNTs: Modal analysis vol.9, pp.6, 2020, https://doi.org/10.12989/acc.2020.9.6.577
- Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers vol.36, pp.1, 2020, https://doi.org/10.12989/scs.2020.36.1.001
- Analysis of nonlocal Kelvin's model for embedded microtubules: Via viscoelastic medium vol.26, pp.6, 2020, https://doi.org/10.12989/sss.2020.26.6.809
- On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.389
- Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157
- Propagation of waves with nonlocal effects for vibration response of armchair double-walled CNTs vol.11, pp.2, 2017, https://doi.org/10.12989/anr.2021.11.2.183