DOI QR코드

DOI QR Code

Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation

  • Shafiei, Hamed (Department of Mechanical and Aerospace Engineering, Shiraz University of Technology) ;
  • Setoodeh, Ali Reza (Department of Mechanical and Aerospace Engineering, Shiraz University of Technology)
  • Received : 2016.09.20
  • Accepted : 2017.03.10
  • Published : 2017.05.20

Abstract

The purpose of this research is to study the nonlinear free vibration and post-buckling analysis of functionally graded carbon nanotube reinforced composite (FG-CNTRC) beams resting on a nonlinear elastic foundation. Uniformly and functionally graded distributions of single walled carbon nanotubes as reinforcing phase are considered in the polymeric matrix. The modified form of rule of mixture is used to estimate the material properties of CNTRC beams. The governing equations are derived employing Euler-Bernoulli beam theory along with energy method and Hamilton's principle. Applying von $K\acute{a}rm\acute{a}n's$ strain-displacement assumptions, the geometric nonlinearity is taken into consideration. The developed governing equations with quadratic and cubic nonlinearities are solved using variational iteration method (VIM) and the analytical expressions and numerical results are obtained for vibration and stability analysis of nanocomposite beams. The presented comparative results are indicative for the reliability, accuracy and fast convergence rate of the solution. Eventually, the effects of different parameters, such as foundation stiffness, volume fraction and distributions of carbon nanotubes, slenderness ratio, vibration amplitude, coefficients of elastic foundation and boundary conditions on the nonlinear frequencies, vibration response and post-buckling loads of FG-CNTRC beams are examined. The developed analytical solution provides direct insight into parametric studies of particular parameters of the problem.

Keywords

References

  1. Alesadi, A., Galehdari, M. and Shojaee, S. (2017), "Free vibration and buckling analysis of cross-ply laminated composite plates using Carrera's unified formulation based on Isogeometric approach", Comput. Struct., 183, 38-47. https://doi.org/10.1016/j.compstruc.2017.01.013
  2. Anjana, R., Sharma, S. and Bansal, A. (2016), "Molecular dynamics simulation of carbon nanotube reinforced polythylene composites", J. Compos. Mater. DOI: 10.1177/0021998316674264
  3. Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R. and Sadeghi, F. (2014), "Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams", Compos. Struct., 113, 316-327. https://doi.org/10.1016/j.compstruct.2014.03.015
  4. Azrar, L., Benamar, R. and White, R.G. (1999), "A semi-analytical approach to the nonlinear dynamic response problem of S-S and C-C beams at large vibration amplitudes, part I: General theory and application to the single mode approach to free and forced vibration analysis", J. Sound Vib., 224(2), 183-207. https://doi.org/10.1006/jsvi.1998.1893
  5. Bagdatli, S.M. (2015a), "Non-linear vibration of nanobeams with various boundary condition based on nonlocal elasticity theory", Compos. Part B: Eng., 80, 43-52. https://doi.org/10.1016/j.compositesb.2015.05.030
  6. Bagdatli, S.M. (2015b), "Non-linear transverse vibrations of tensioned nanobeams using nonlocal beam theory", Struct. Eng. Mech., Int. J., 55(2), 281-298. https://doi.org/10.12989/sem.2015.55.2.281
  7. Bayat, M., Pakar, I. and Emadi, A. (2013), "Vibration of electrostatically actuated microbeam by means of homotopy perturbation method", Struct. Eng. Mech., Int. J., 48(6), 823-831. https://doi.org/10.12989/sem.2013.48.6.823
  8. Biswal, M., Sahu, S.K. and Asha, A.V. (2016), "Vibration of composite cylindrical shallow shells subjected to hygrothermal loading-experimental and numerical results", Compos. Part B: Eng., 98, 108-119. https://doi.org/10.1016/j.compositesb.2016.05.037
  9. Cadec, M., Coleman, J.N., Barron, V., Hedicke, K. and Blau, W.J. (2002), "Morphological and mechanical properties of carbonnanotube-reinforced semicrystalline and amorphous polymer composites", Appl. Phys. Lett., 81(27), 5123-5125. https://doi.org/10.1063/1.1533118
  10. Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: potential and current challenges", Mater. Des., 28(9), 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022
  11. Fiedler, B., Gojny, F.H., Wichmann, M.H.G., Notle, M.C.M. and Schulte. K. (2006), "Fundamental aspects of nano-reinforced composites", Compos. Sci. Technol., 66(16), 3115-3125. https://doi.org/10.1016/j.compscitech.2005.01.014
  12. Formica, G., Lacarbonara, W. and Alessi, R. (2010), "Vibrations of carbon nanotube-reinforced composites", J. Sound Vib., 329(10), 1875-1889. https://doi.org/10.1016/j.jsv.2009.11.020
  13. Ghorbani Shenas, A., Malekzadeh, P. and Ziaee, S. (2017), "Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment", Compos. Struct., 162, 325-340. https://doi.org/10.1016/j.compstruct.2016.12.009
  14. Han, Y. and Elliot, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011
  15. He, J.H. (1999), "Variational iteration method-a kind of non-linear analytical technique: some examples", Int. J. Non-Linear Mech., 34(4), 699-708. https://doi.org/10.1016/S0020-7462(98)00048-1
  16. He, J.H. (2007), "Variational iteration method-Some recent results and new interpretations", J. Comput. Appl. Math., 207(1), 3-17. https://doi.org/10.1016/j.cam.2006.07.009
  17. Heydarpour, Y., Aghdam, M.M. and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200. https://doi.org/10.1016/j.compstruct.2014.06.023
  18. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0
  19. Javanmard, M., Bayat, M. and Ardakani, A. (2013), "Nonlinear vibration of Euler-Bernoulli beams resting on linear elastic foundation", Steel Compos. Struct., Int. J., 15(4), 439-449. https://doi.org/10.12989/scs.2013.15.4.439
  20. Jooybar, N., Malekzadeh, P. and Fiouz, A. (2016), "Vibration of functionally graded carbon nanotubes reinforced composite truncated conical panels with elastically restrained against rotation edges in thermal environment", Compos. Part B: Eng., 106, 242-261. https://doi.org/10.1016/j.compositesb.2016.09.030
  21. Ke, L.L., Yang, J. and Kitipornchai, S. (2010a), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92(3), 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024
  22. Ke, L.L., Yang, J. and Kitipornchai, S. (2010b), "An analytical study on the nonlinear vibration of functionally graded beams", Meccanica, 45(6), 743-752. https://doi.org/10.1007/s11012-009-9276-1
  23. Lai, S.K., Harrington, J., Xiang, Y. and Chow, K.W. (2012), "Accurate analytical perturbation approach for large amplitude vibration of functionally graded beams", Int. J. Non-Linear Mech., 47(5), 473-480. https://doi.org/10.1016/j.ijnonlinmec.2011.09.019
  24. Lu, X.X. and Hu, Z. (2012), "Mechanical property evaluation of single-walled carbon nanotubes by finite element modeling", Compos. Part B: Eng., 43(4), 1902-1913. https://doi.org/10.1016/j.compositesb.2012.02.002
  25. Malekzadeh, P. and Dehbozorgi, M. (2016), "Low velocity impact analysis of functionally graded carbon nanotubes reinforced composite skew plates", Compos. Struct., 140, 728-748. https://doi.org/10.1016/j.compstruct.2016.01.045
  26. Malekzadeh, P. and Heydarpour, Y. (2015), "Mixed Navierlayerwise differential quadrature three-dimensional static and free vibration analysis of functionally graded carbon nanotube reinforced composite laminated plates", Meccanica, 50(1), 143-167. https://doi.org/10.1007/s11012-014-0061-4
  27. Malekzadeh, P. and Setoodeh, A.R. (2007), "Large deformation analysis of moderately thick laminated plates on nonlinear elastic foundation by DQM", Compos. Struct., 80(4), 569-579. https://doi.org/10.1016/j.compstruct.2006.07.004
  28. Malekzadeh, P. and Vosoughi, A.R. (2009), "DQM large amplitude vibration of composite beams on nonlinear elastic foundation with restrained edges", Common. Nonlinear Sci. Numer. Simul., 14(3), 906-915. https://doi.org/10.1016/j.cnsns.2007.10.014
  29. Malekzadeh, P. and Zarei, A.R. (2014), "Free vibration of quadrilateral laminated plates with carbon nanotube reinforced composite layers", Thin-Wall. Struct., 82, 221-232. https://doi.org/10.1016/j.tws.2014.04.016
  30. Mehrabadi, S.J., Aragh, B.S., Khoshkhahesh, V. and Taherpour, A. (2012), "Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight single-walled carbon nanotubes", Compos. Part B: Eng., 43(4), 2031-2040. https://doi.org/10.1016/j.compositesb.2012.01.067
  31. Rao, S.S. (2007), Vibration of Continuous Systems, John Wiley and Sons, Hoboken, NJ, USA.
  32. Sahoo, R. and Singh, B.N. (2014), "A new trigonometric zigzag theory for buckling and free vibration analysis of laminated composite and sandwich plates", Compos. Struct., 117, 316-332. https://doi.org/10.1016/j.compstruct.2014.05.002
  33. Sedighi, H.M., Shirazi, K.H. and Zare, J. (2012), "An analytic solution of transversal oscillation of quintic non-linear beam with homotopy analysis method", Int. J. Non-Linear Mech., 47(7), 777-784. https://doi.org/10.1016/j.ijnonlinmec.2012.04.008
  34. Setoodeh, A.R. and Afrahim, S. (2014), "Nonlinear dynamic analysis of FG micro-pipes conveying fluid based on strain gradient theory", Compos. Struct., 116, 128-135. https://doi.org/10.1016/j.compstruct.2014.05.013
  35. Setoodeh, A.R. and Rezaei, M. (2017a), "Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation", Struct. Eng. Mech., Int. J., 61(2), 209-220. https://doi.org/10.12989/sem.2017.61.2.209
  36. Setoodeh, A.R. and Rezaei, M. (2017b), "An explicit solution for the size-dependent large amplitude transverse vibration of thin functionally graded micro-plates", Sci. Iran. [In press]
  37. Setoodeh, A.R. and Shojaee, M. (2016), "Application of TW-DQ method to nonlinear free vibration analysis of FG carbon nanotube-reinforced composite quadrilateral plates", Thin-Wall. Struct., 108, 1-11. https://doi.org/10.1016/j.tws.2016.07.019
  38. Setoodeh, A.R. and Shojaee, M. (2017), "Critical buckling load optimization of functionally graded carbon-nanotube reinforced laminated composite quadrilateral plates", Polym. Compos. DOI: 10.1002/pc.24289
  39. Setoodeh, A.R., Rezaei, M. and Zendehdel Shahri, M.R. (2016), "Linear and nonlinear torsional free vibration of functionally graded micro/nano-tubes based on modified couple stress theory", Appl. Math. Mech. Eng. Ed., 37(6), 725-740. https://doi.org/10.1007/s10483-016-2085-6
  40. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
  41. Sun, C.H., Li, F., Cheng, H.M. and Lu, G.Q. (2005), "Axial Young's modulus prediction of single-walled carbon nanotube arrays with diameters from nanometer to meter scales", Appl. Phys. Lett., 87(19), 193101. https://doi.org/10.1063/1.2119409
  42. Thostenson, E.T. and Chou, T.W. (2003), "On the elastic properties of carbon nanotube-based composites: Modelling and characterization", J. Phys.-Appl. Phys., 36(5), 573-582. https://doi.org/10.1088/0022-3727/36/5/323
  43. Thostenson, E.T., Ren, Z.F. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: A review", Compos. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X
  44. Togun, N. and Bagdatli, S.M. (2016a), "Size dependent nonlinear vibration of the tensioned nanobeam based on the modified couple stress theory", Compos. Part B: Eng., 97, 255-262. https://doi.org/10.1016/j.compositesb.2016.04.074
  45. Togun, N. and Bagdatli, S.M. (2016b), "Nonlinear vibration of a nanobeam on a Pasternak elastic foundation based on non-local Euler-Bernoulli beam theory", Math. Comput. Appl., 21(1), 3.
  46. Vodenitcharova, T. and Zhang, L.C. (2006), "Bending and local buckling of a nanocomposite beam reinforced by a singlewalled carbon nanotube", Int. J. Solids Struct., 43(10), 3006-3024. https://doi.org/10.1016/j.ijsolstr.2005.05.014
  47. Vosoughi, A.R., Malekzadeh, P., Banan, Ma.R. and Banan, Mo.R. (2012), "Thermal buckling and postbuckling of laminated composite beams with temperature-dependent properties", Int. J. Non-Linear Mech., 47(3), 96-102. https://doi.org/10.1016/j.ijnonlinmec.2011.11.009
  48. Wang, Q., Shi, D. and Liang, Q. (2016), "Free vibration analysis of axially loaded laminated composite beams with general boundary conditions by using a modified Fourier-Ritz approach", J. Compos. Mater., 50(15), 2111-2135. https://doi.org/10.1177/0021998315602138
  49. Wu, H.L., Yang, J. and Kitipornchai, S. (2016), "Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections", Compos. Part B: Eng., 90, 86-96. https://doi.org/10.1016/j.compositesb.2015.12.007
  50. Wuite, J. and Adali, S. (2005), "Deflection and stress behaviour of nanocomposite reinforced beams using a multiscale analysis", Compos. Struct., 71(3-4), 388-396. https://doi.org/10.1016/j.compstruct.2005.09.011
  51. Yas, M.H. and Samadi, N. (2012), "Free vibration and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Vessels Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012
  52. Yazdi, A.A. (2013), "Homotopy perturbation method for nonlinear vibration analysis of functionally graded plate", J. Vib. Acoust., 135(2), 021012. https://doi.org/10.1115/1.4023252
  53. Zafarmand, H. and Kadkhodayan, M. (2014), "Nonlinear analysis of functionally graded nanocomposite rotating thick disks with variable thickness reinforced with carbon nanotubes", Aerosp. Sci. Technol., 41, 47-54.
  54. Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010

Cited by

  1. The critical buckling load of reinforced nanocomposite porous plates vol.67, pp.2, 2017, https://doi.org/10.12989/sem.2018.67.2.115
  2. Nonlinear aeroelastic stability analysis of three-phase nano-composite plates vol.47, pp.6, 2017, https://doi.org/10.1080/15397734.2019.1610436
  3. Nonlinear vibration analysis of carbon nanotube reinforced composite plane structures vol.30, pp.6, 2017, https://doi.org/10.12989/scs.2019.30.6.493
  4. Free Vibration Analysis of Simply Supported P-FGM Nanoplate Using a Nonlocal Four Variables Shear Deformation Plate Theory vol.69, pp.4, 2017, https://doi.org/10.2478/scjme-2019-0039
  5. Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle vol.73, pp.2, 2017, https://doi.org/10.12989/sem.2020.73.2.209
  6. Nonlocal vibration of DWCNTs based on Flügge shell model using wave propagation approach vol.34, pp.4, 2020, https://doi.org/10.12989/scs.2020.34.4.599
  7. Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns vol.35, pp.2, 2017, https://doi.org/10.12989/scs.2020.35.2.295
  8. Theoretical impact of Kelvin's theory for vibration of double walled carbon nanotubes vol.8, pp.4, 2017, https://doi.org/10.12989/anr.2020.8.4.307
  9. Effect of chiral structure for free vibration of DWCNTs: Modal analysis vol.9, pp.6, 2020, https://doi.org/10.12989/acc.2020.9.6.577
  10. Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers vol.36, pp.1, 2020, https://doi.org/10.12989/scs.2020.36.1.001
  11. Analysis of nonlocal Kelvin's model for embedded microtubules: Via viscoelastic medium vol.26, pp.6, 2020, https://doi.org/10.12989/sss.2020.26.6.809
  12. On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.389
  13. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157
  14. Propagation of waves with nonlocal effects for vibration response of armchair double-walled CNTs vol.11, pp.2, 2017, https://doi.org/10.12989/anr.2021.11.2.183