DOI QR코드

DOI QR Code

Investigation of natural solution effect in electrical conductivity of PANI-CeO2 nanocomposites

  • Shafiee, Mohammad Reza Mohammad (Department of Chemistry, Faculty of Sciences, Najafabad Branch, Islamic Azad University) ;
  • Sattari, Ahmad (Department of Chemistry, Faculty of Sciences, Najafabad Branch, Islamic Azad University) ;
  • Kargar, Mahboubeh (Department of Chemistry, Faculty of Sciences, Najafabad Branch, Islamic Azad University) ;
  • Ghashang, Majid (Department of Chemistry, Faculty of Sciences, Najafabad Branch, Islamic Azad University)
  • Received : 2016.05.14
  • Accepted : 2017.02.26
  • Published : 2017.05.20

Abstract

A green biosynthesis method is described for the preparation of Polyaniline (PANI)-cerium dioxide ($CeO_2$) nanocomposites in different media via in-situ oxidative polymerization procedure. The effect of various media including use of HCl, Lemon Juice, Beverage, White Vinegar, Verjuice and Apple vinegar extracts on the particles size, morphology as well as the conductivity of $PANI-CeO_2$ nanocomposites was investigated. The electron-withdrawing feature of $CeO_2$ increases doping level of PANI and enhances electron delocalization. These cause a significantly blue shift of C = C stretching band of quinoid from $1570cm^{-1}$ to $1585cm^{-1}$. The optical properties of the pure material and polymeric nanocomposites as well as their interfacial interaction in nanocomposite structures analyzed by UV-visible spectroscopy. The DC electrical conductivity (${\sigma}$) of as-prepared HCl doped PANI and a $PANI-CeO_2$ nanocomposite measured by a four-probe method at room temperature was studied.

Keywords

References

  1. Abdullah Dar, M., Kotnala, R.K., Verma, V., Shah, J., Siddiqui, W.A. and Alam, M. (2012), "High magneto-crystalline anisotropic core-shell structured $Mn_{0.5}Zn_{0.5}Fe_2O_4$/polyaniline nanocomposites prepared by in situ emulsion polymerization", J. Phys. Chem. C, 116(9), 5277-5287. https://doi.org/10.1021/jp205652d
  2. Afnani, A. and Erkmen, R.E. (2016), "Iterative global-local procedure for the analysis of thin-walled composite laminates", Steel Compos. Struct., Int. J., 20(3), 693-718. https://doi.org/10.12989/scs.2016.20.3.693
  3. Aghaei, M., Forouzan, M.R., Nikforouz, M. and Shahabi, E. (2015), "A study on different failure criteria to predict damage in glass/polyester composite beams under low velocity impact", Steel Compos. Struct., Int. J., 18(5), 1291-1303. https://doi.org/10.12989/scs.2015.18.5.1291
  4. Anothumakkool, B., Torris, A.T.A., Bhange, S.N., Unni, S.M., Badiger, M.V. and Kurungot, S. (2013), "Design of a high performance thin all-solid-state supercapacitor mimicking the active interface of its liquid-state counterpart", ACS Appl. Mater. Interfaces, 5(24), 13397-13404. https://doi.org/10.1021/am404320e
  5. Ansari, A.A., Sumana, G., Khan, R. and Malhotra, B.D. (2009), "Polyaniline-cerium oxide nanocomposite for hydrogen peroxide sensor", J. Nanosci. Nanotech., 9(8), 4679-4685. https://doi.org/10.1166/jnn.2009.1085
  6. Ansari, M.O., Mansoob Khan, M., Ansari, S.A., Raju, K., Lee, J. and Cho, M.H. (2014), "Enhanced thermal stability under DC electrical conductivity retention and visible light activity of Ag/$TiO_2$@ polyaniline nanocomposite film", ACS Appl. Mater. Interfaces, 6(11), 8124-8133. https://doi.org/10.1021/am500488e
  7. Azhdarzadeh, F. and Hojjati, M. (2016), "Chemical composition and antimicrobial activity of leaf, ripe and unripe peel of bitter orange (Citrus aurantium) essential oils", Nutr. Food Sci. Res., 3(1), 43-50.
  8. Boomi, P. and Prabu, H.G. (2013), "Synthesis, characterization and antibacterial analysis of polyaniline/Au-Pd nanocomposite", Colloids Surf. A, 429, 51-59. https://doi.org/10.1016/j.colsurfa.2013.03.053
  9. Chiou, N.R. and Epstein, A.J. (2005), "Polyaniline nanofibers prepared by dilute polymerization", Adv. Mater., 17(13), 1679-1683. https://doi.org/10.1002/adma.200401000
  10. Chuang, F. and Yang, S. (2008), "Cerium dioxide/polyaniline core-shell nanocomposites", J. Colloid Interface Sci., 320(1), 194-201. https://doi.org/10.1016/j.jcis.2008.01.015
  11. Dehbashi, M., Aliahmad, M., Mohammad Shafiee, M.R. and Ghashang, M. (2013), "Nickel-doped $SnO_2$ nanoparticles: Preparation and evaluation of their catalytic activity in the synthesis of 1-amido Alkyl-2-naphtholes", Synth. React. Inorg. Metal-Org. Nano-Metal Chem, 43(9), 1301-1306. https://doi.org/10.1080/15533174.2012.757753
  12. Du, X.S., Xiao, M. and Meng, Y.Z. (2004), "Facile synthesis of highly conductive polyaniline/graphite nanocomposites", Eur. Polym. J., 40(7), 1489-1493. https://doi.org/10.1016/j.eurpolymj.2004.02.009
  13. Gai, L., Du, G., Zuo, Z., Wang, Y., Liu, D. and Liu, H. (2009), "Controlled synthesis of hydrogen titanate-polyaniline composite nanowires and their resistance-temperature characteristics", J. Phys. Chem. C, 113(18), 7610-7615. https://doi.org/10.1021/jp900369y
  14. Gemeay, A.H., Mansour, I.A., El-sharkawy, R.G. and Zaki, A.B. (2005), "Preparation and characterization of polyaniline/manganese dioxide composites via oxidative polymerization: effect of acids", Eur. Polym. J., 41(11), 2575-2583. https://doi.org/10.1016/j.eurpolymj.2005.05.030
  15. Ghashang, M. (2012), "Preparation and application of barium sulfate nano-particles in the synthesis of 2, 4, 5-triaryl and Naryl (alkyl)-2, 4, 5-triaryl imidazoles", Curr. Org. Synth., 9(5), 727-732. https://doi.org/10.2174/157017912803251800
  16. Ghashang, M., Mansoor, S.S. and Aswin K. (2014), "Thiourea dioxide: An efficient and reusable organocatalyst for the rapid one-pot synthesis of pyrano [4, 3-b] pyran derivatives in water", Chin. J. Catal., 35(1), 127-133. https://doi.org/10.1016/S1872-2067(12)60727-X
  17. Ghashang, M., Kargar, M., Shafiee, M.R.M., Mansoor, S.S., Fazlinia, A. and Esfandiari, H. (2015), "CuO nano-structures prepared in rosmarinus officinalis leaves extract medium: Efficient catalysts for the aqueous media preparation of dihydropyrano [3, 2-c] chromene derivatives", Recent Pat. Nanotech., 9(3), 204-211. https://doi.org/10.2174/1872210510999151126110657
  18. Ghosh, A., Saha, R., Mukherjee, K., Sar, P., Ghosh, S.K., Malik, S., Bhattacharyya, S.S. and Saha, B. (2014a), "Rate enhancement via micelle encapsulation for room temperature metal catalyzed Ce(IV) oxidation of p-chlorobenzaldehyde to pchlorobenzoic acid in aqueous medium at atmospheric pressure", J. Mol. Liq., 190, 81-93. https://doi.org/10.1016/j.molliq.2013.10.029
  19. Ghosh, A., Saha, R. and Saha, B. (2014b), "Effect of CHAPS and CPC micelles on Ir(III) catalyzed Ce(IV) oxidation of aliphatic alcohols at room temperature and pressure", J. Mol. Liq., 196, 223-237. https://doi.org/10.1016/j.molliq.2014.03.037
  20. Ghosh, A., Sar, P., Malik, S. and Saha, B. (2015), "Role of surfactants on metal mediated cerium(IV) oxidation of valeraldehyde at room temperature and pressure", J. Mol. Liq., 211, 48-62. https://doi.org/10.1016/j.molliq.2015.06.056
  21. Jiang, J., Ai, L. and Li, L. (2009), "Synthesis and characterization of polyaniline-based nanocomposites containing magnetic Li-Ni-La ferrite", J. Non-Cryst. Solids, 355(34-36), 1733-1736. https://doi.org/10.1016/j.jnoncrysol.2009.06.012
  22. Jing, S., Xing, S., Lianxiang, Y., Yan, W. and Zhao, C. (2007), "Synthesis and characterization of Ag/polyaniline core-shell nanocomposites based on silver nanoparticles colloid", Mater. Lett., 61(13), 2794-2797. https://doi.org/10.1016/j.matlet.2006.10.032
  23. Kargar, M., Mohammad Shafiee, M.R. and Ghashang, M. (2015), "Green protocol preparation of ZnO nanoparticles in prunus cerasus juice media", Nanosci. Nanotech.-Asia, 5(1), 44-49.
  24. Khened, B.S., Ambika Prasad, M.V.N. and Sasikala, M. (2016), "High sensitivity and selectivity of LPG gas by three dimensional molecular ordered polyaniline/$CeO_2$ nanocomposites", Sensor Lett., 14(8), 786-793. https://doi.org/10.1166/sl.2016.3690
  25. Kowsari, E. and Faraghi, G. (2010), "Ultrasound and ionic-liquidassisted synthesis and characterization, of polyaniline/$Y_2O_3$ nanocomposite with controlled conductivity", Ultrason. Sonochem., 17(4), 718-725. https://doi.org/10.1016/j.ultsonch.2009.11.018
  26. Kumar, N.A. and Baek, J. (2014), "Electrochemical supercapacitors from conducting polyaniline-graphene platforms", Chem. Commun., 50(48), 6298-6308. https://doi.org/10.1039/c4cc01049c
  27. Kumar, E., Selvarajan, P. and Muthuraj, D. (2012), "Preparation and characterization of polyaniline/cerium dioxide ($CeO_2$) nanocomposite via in situ polymerization", J. Mater. Sci., 47(20), 7148-7156. https://doi.org/10.1007/s10853-012-6655-0
  28. Lin, J., Zhang, C.G., Yan, Z., Zhu, Y., Peng, Z.W., Hauge, R.H., Natelson, D. and Tour, J.M. (2013), "3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance", Nano Lett., 13(1), 72-78. https://doi.org/10.1021/nl3034976
  29. Mo, T.-C., Wang, H.-W., Chen, S.-Y. and Yeh, Y.-C. (2008), "Synthesis and dielectric properties of polyaniline/titanium dioxide nanocomposites", Ceram. Int., 34(7), 1767-1771. https://doi.org/10.1016/j.ceramint.2007.06.002
  30. Pech, D., Brunet, M., Durou, H., Huang, P., Mochalin, V., Gogotsi, Y., Taberna, P. and Simon, P. (2010), "Ultrahigh-power micrometre-sized supercapacitors based on inion-like carbon", Nat. Nanotechnol., 5, 651-654. https://doi.org/10.1038/nnano.2010.162
  31. Phang, S.W., Tadokoro, M., Watanabe, J. and Kuramoto, N. (2008), "Microwave absorption behaviors of polyaniline nanocomposites containing $TiO_2$ nanoparticles", Curr. Appl. Phys., 8(3-4), 391-394. https://doi.org/10.1016/j.cap.2007.10.022
  32. Pillalamarri, S.K., Blum, F.D., Tokuhiro, A.T. and Bertino, M.F. (2005), "One-pot synthesis of polyaniline-metal nanocomposites", Chem. Mater., 17(24), 5941-5944. https://doi.org/10.1021/cm050827y
  33. Poyraz, S., Cerkez, I., Huang, T., Liu, Z., Kang, L., Luo, J. and Zhang, X. (2014), "One-step synthesis and characterization of polyaniline nanofiber/silver nanoparticle composite networks as anti-bacterial agents", ACS Appl. Mater. Interfaces, 6(22), 20025-20034. https://doi.org/10.1021/am505571m
  34. Reddy, K.R., Lee, K.P. and Gopalan, A.I. (2008), "Self-assembly approach for the synthesis of electro-magnetic functionalized $Fe_3O_4$/polyaniline nanocomposites: Effect of dopant on the properties", Colloids Surf. A: Physicochem. Eng. Asp., 320(1-3), 49-56. https://doi.org/10.1016/j.colsurfa.2007.12.057
  35. Sasikumar, Y., Madhan Kumar, A., Gasem, Z.M. and Ebenso, E.E. (2015), "Hybrid nanocomposite from aniline and $CeO_2$ nanoparticles: Surface protective performance on mild steel in acidic environment", Appl. Surf. Sci., 330, 207-215. https://doi.org/10.1016/j.apsusc.2015.01.002
  36. Shafiee, M.R.M., Fazlinia, A., Yaghooti, N. and Ghashang, M. (2012), "A convenient method for the preparation of 2, 4, 5-triaryl imidazoles using barium chloride dispersed on silica gel nanoparticles ($BaCl_2$-nano $SiO_2$) as heterogeneous reusable catalyst", Lett. Org. Chem., 9(5), 351-355. https://doi.org/10.2174/157017812801264683
  37. Shafiee, M.M.R., Ghashang, M. and Fazlinia, A. (2013), "Preparation of 1, 4-dihydropyridine derivatives using perchloric acid adsorbed on magnetic $Fe_3O_4$ nanoparticles coated with silica", Curr. Nanosci., 9(2), 197-201. https://doi.org/10.2174/1573413711309020006
  38. Sharma, R.K., Sahu, V., Grover, S., Goel, S. and Singh, G. (2015), "Asymmetric supercapacitive characteristics of PANI embedded holey graphene nanoribbons", ACS Sustain. Chem. Eng., 3(7), 1460-1469. https://doi.org/10.1021/acssuschemeng.5b00184
  39. Stejskal, J., Trchova, M., Prokes, J. and Sapurina, I. (2001), "Brominated polyaniline", J. Chem. Mater., 13(11), 4083-4086. https://doi.org/10.1021/cm011059n
  40. Taghrir, H., Ghashang, M. and Biregan, M.N. (2016), "Preparation of 1-amidoalkyl-2-naphthol derivatives using barium phosphate nano-powders", Chin. Chem. Lett., 27(1), 119-126. https://doi.org/10.1016/j.cclet.2015.08.011
  41. Taguchi, M., Takami, S., Adschiri, T., Nakane, T., Sato, K. and Naka, T. (2011), "Supercritical hydrothermal synthesis of hydrophilic polymer-modified water dispersible $CeO_2$ nanoparticles", Cryst. Eng. Commun., 13(8), 2841-2848. https://doi.org/10.1039/C0CE00467G
  42. Tamboli, M.S., Kulkarni, M.V., Patil, R.H., Gade, W.N., Navale, S.C. and Kale, B.B. (2012), "Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent", Colloids Surf. B, 92, 35-41. https://doi.org/10.1016/j.colsurfb.2011.11.006
  43. Tsai, H.L., Schindler, J.L., Kannewurf, C.R. and Kanatzidis, M.G. (1997), "Plastic superconducting polymer-$NbSe_2$ nanocomposites", Chem. Mater., 9(4), 875-878. https://doi.org/10.1021/cm960516a
  44. Weiss, Z., Mandler, D., Shustak, G. and Domb, A.J. (2004), "Pyrrole derivatives for electrochemical coating of metallic medical devices", J. Polym. Sci. A: Polym. Chem., 42(7), 1658-1667. https://doi.org/10.1002/pola.11097
  45. Xiong, S., Phua, S.L., Dunn, B.S., Ma, J. and Lu, X. (2010), "Covalently bonded polyaniline-$TiO_2$ hybrids: A facile approach to highly stable anodic electrochromic materials with low oxidation potentials", Chem. Mater., 22(1), 255-260. https://doi.org/10.1021/cm903058c
  46. Yan, Y., Cheng, Q., Pavlinek, V., Saha, P. and Li, C. (2012), "Fabrication of polyaniline/mesoporous carbon/$MnO_2$ ternary nanocomposites and their enhanced electrochemical performance for supercapacitors", Electrochim. Acta, 71, 27-32. https://doi.org/10.1016/j.electacta.2012.03.101
  47. Zhang, X., Goux, W.J. and Manohar, S.K. (2004), "Synthesis of polyaniline nanofibers by nanofiber seeding", J. Am. Chem. Soc., 126(14), 4502-4503. https://doi.org/10.1021/ja031867a
  48. Zhou, H., Lin, Y., Yu, P., Su, L. and Mao, L. (2009), "Doping polyaniline with pristine carbon nanotubes into electroactive nanocomposite in neutral and alkaline media", Electrochem. Commun., 11(5), 965-968. https://doi.org/10.1016/j.elecom.2009.02.036
  49. Zhou, C., Zhang, Y., Li, Y. and Liu, J. (2012), "Construction of high capacitance 3D CoO @ polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor", Nano Lett., 13(5), 2078-2085. https://doi.org/10.1021/nl400378j

Cited by

  1. Synthesis of 3,4,5-substituted furan-2(5H)-ones using Al-doped ZnO nanostructure vol.44, pp.9, 2018, https://doi.org/10.1007/s11164-018-3406-0
  2. )-one derivatives vol.39, pp.4, 2018, https://doi.org/10.1080/17415993.2018.1436710
  3. ZnO-CeO2 nanocomposite: efficient catalyst for the preparation of thieno[2,3-d]pyrimidin-4(3H)-one derivatives vol.0, pp.0, 2018, https://doi.org/10.1515/mgmc-2017-0038
  4. Green Chemistry Preparation of thiochromeno[4,3-b]pyran and benzo[h]thiazolo[2,3-b]quinazoline Derivatives using HSBM Technique over ZnAl2O4 Nano-Powders vol.22, pp.6, 2017, https://doi.org/10.2174/1386207322666190617164617