DOI QR코드

DOI QR Code

Players Adaptive Monster Generation Technique Using Genetic Algorithm

유전 알고리즘을 이용한 플레이어 적응형 몬스터 생성 기법

  • Kim, Ji-Min (Graduate School, Dept. of Interaction Design, Hallym University) ;
  • Kim, Sun-Jeong (Graduate School, Dept. of Interaction Design, Hallym University) ;
  • Hong, Seokmin (Dept. of Advertising and Public Relations, Hallym University)
  • Received : 2016.09.29
  • Accepted : 2017.02.15
  • Published : 2017.04.30

Abstract

As the game industry is blooming, the generation of contents is far behind the consumption of contents. With this reason, it is necessary to afford the game contents considering level of game player's skill. In order to effectively solve this problem, Procedural Content Generation(PCG) using Artificial Intelligence(AI) is one of the plausible options. This paper proposes the procedural method to generate various monsters considering level of player's skill using genetic algorithm. One gene consists of the properties of a monster and one genome consists of genes for various monsters. A generated monster is evaluated by battle simulation with a player and then goes through selection and crossover steps. Using our proposed scheme, players adaptive monsters are generated procedurally based on genetic algorithm and the variety of monsters which are generated with different number of genome is compared.

게임 산업이 발전하면서 콘텐츠의 생성 속도보다 훨씬 빠른 속도로 콘텐츠가 소비되고 있고, 플레이어의 게임 숙련도에 적합한 레벨의 게임 콘텐츠들이 지속적으로 제공될 것을 필요로 하고 있다. 이러한 문제를 효과적으로 해결하기 위해 활용되는 방법이 인공지능(Artificial Intelligence, AI)을 이용한 절차적 콘텐츠 생성(Procedural Content Generation, PCG)이다. 본 논문에서는 유전 알고리즘을 이용하여 플레이어에게 적합한 난이도를 가지고 있는 다양한 종류의 몬스터를 자동 생성하는 절차적 방법을 제안한다. 몬스터들의 주요 속성을 유전자로 구성하고 다양한 종류의 몬스터 유전자들로 염색체를 만들어 이용한다. 생성된 몬스터와 플레이어의 전투 시뮬레이션으로 유전자를 평가하여 선택 후 교배한다. 본 논문의 제안 방법을 이용해 플레이어 적응형 몬스터들을 유전 알고리즘에 기반을 두어 절차적으로 생성하고, 염색체 개수에 따라 생성된 몬스터의 다양성을 비교해본다.

Keywords

References

  1. Yungha Kim., "Making plausible random generated content", NDC, 2010.
  2. Jubok Kim. "Procedural Terrain and the Raiders Of The Trend", NDC, 2011.
  3. Keith Burgun, "Understanding Balance in Video Games", Gamasutra, 2011.06.08
  4. Chan-Il ParkO, Hae-Sool Yang. "Balance for Fighting System between Characters", Journal of Korea Game Society, Vol. 7, No. 3, 2007.
  5. Dong-Seong Choi, Sung Hyun Cho "A Methodology for MMORPG Design Based on the Flow Theory", Korea Game Society, Vol. 8. No. 2. pp.14-16, 2008.
  6. HyeJung Hyun, Taesik Kim, "An Efficient Algorithm for Character Adjustments in Game Balancing", The Korea Contents Association, Vol. 8 No. 1, pp. 340-341, 2008. http://dx.doi.org/10.5392/JKCA.2008.8.1.339
  7. D. Nicolas, E. N. Yee, and J. M. Robert, "Alone Together? Exploring the Social Dynamics of Massively Multiplayer Online Games," CHI 2006 Proceedings Games and Performances, pp.407-416, 2006(4). http://dx.doi.org/10.1145/1124772.1124834
  8. Joon Hyun Jeon. Dong Eun Kim. Eui Jun Jeong. "Preliminary Study of a MMORPG Combat Balance Assessment Model", Korean Society For Computer Game, p49-60, vol. 26 No 3, 2013.
  9. Daesoon Yong., "A study on Game Design for applying fun factor", Game Industry Journal. 2003
  10. Procedural Content Generation: Thinking With Modules, Ichiro Lambe, 2012,07,05, Gamasutra
  11. Jennett, Charlene Ianthe. Is game immersion just another form of selective attention? An empirical investigation of real world dissociation in computer game immersion. Diss. UCL (University College London), 2010.
  12. Cowley, B., Charles, D., Black, M. and Hickey, R., Toward an Understanding of Flow in Video Games, Computer Entertainment, 6, 1-27, 2008. http://dx.doi.org/10.1145/1371216.1371223
  13. Jinsung Park, Gyuho Lee, Byoungwoo Song, Youn-guk Ha. "Personalized Learning Evaluation System Using Attribute-Based Elo Rating Algorithm". Korea Information Science Vol.2014 No.6, 2014.
  14. Jun-Woo Kim, Kwang-Hyuk Im. "Developing a Subset Sum Problem based Puzzle Game for Learning Mathematical" Journal of the Korea Contents Association, 2013. http://dx.doi.org/10.5392/JKCA.2013.13.12.680
  15. Sang-Won Um, Tae-Yong Kim, Jong-Soo choi, "Player dependent difficulty control algorithm Using Genetic Algorithm", Journal of the Korea Computer Games Association, vol. 1, 2002.
  16. https://en.wikipedia.org/wiki/Genetic_algorithm
  17. Byung-Ro Moon, Easy Learning Algorithm: An Evolutionary Approach. HanbitMedea 2008
  18. Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron Browne, "Search-Based Procedural Content Generation", EvoApplication 2010, Part 1, LNCS, 6024, pp.141-150, 2010. http://dx.doi.org/10.1007/978-3-642-12239-2_15
  19. Hyung-Ryul Son, Game balance story that makes interesting games, HanbitMedea, 2014.