
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, Mar. 2017 1722
Copyright ⓒ2017 KSII

Lightweight Intrusion Detection of Rootkit
with VMI-Based Driver Separation

Mechanism

Chaoyuan Cui1, Yun Wu2, Yonggang Li1, and Bingyu Sun1
1 Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences

Hefei, Anhui 230031 - China
[e-mail: cycui@iim.ac.cn,lygzr@mail.ustc.edu.cn, bysun@iim.ac.cn]

2 Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences
Hefei, Anhui 230088 - China
[e-mail: wuyun@rntek.cas.cn]

*Corresponding author: Yun Wu

Received September 6, 2016; revised December 12, 2016; accepted January 14, 2017;
published March 31, 2017

Abstract

Intrusion detection techniques based on virtual machine introspection (VMI) provide high
temper-resistance in comparison with traditional in-host anti-virus tools. However, the
presence of semantic gap also leads to the performance and compatibility problems. In order to
map raw bits of hardware to meaningful information of virtual machine, detailed knowledge
of different guest OS is required. In this work, we present VDSM, a lightweight and general
approach based on driver separation mechanism: divide semantic view reconstruction into
online driver of view generation and offline driver of semantics extraction. We have
developed a prototype of VDSM and used it to do intrusion detection on 13 operation systems.
The evaluation results show VDSM is effective and practical with a small performance
overhead.

Keywords: lightweight intrusion detection; introspection; semantic gap; driver separation
mechanism; portability

A preliminary version of this paper appeared in IEEE ICC 2009, June 14-18, Dresden, Germany. This version
includes a concrete analysis and supporting implementation results on MICAz sensor nodes. This research was
supported by a research grant from the IT R&D program of MKE/IITA, the Korean government [2005-Y-001-04,
Development of Next Generation Security Technology]. We express our thanks to Dr. Richard Berke who checked
our manuscript.

https://doi.org/10.3837/tiis.2017.03.026 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1723

1. Introduction

The development and promotion of cloud computing cause the virtual machine to become
the new target of rootkit attack[1] [2] [3]. Rootkit is a piece of program code designed to
elevate privileges, keep undetected and take control of a target machine without his consent.
The common technique of rootkits is to hijack kernel control flow or manipulate kernel states
in order to blind the system and prevent intrusion detection[4]. The latest generations of
rootkits, such as programs that steal user names, passwords, and bank account information,are
increasingly being used to make other malware more effective by hiding them from
anti-malware tools. The teaming of malware with rootkits has been developed from
intellectual challenge to commercial profit, and has caused rootkit developers to improve the
quality and effectiveness of their stealth techniques dramatically [5]. Therefore, the intrusion
detection and prevention of rootkit attack is becoming more and more challenging.
 A threat report from McAfee shows that the rootkit is still continuing to grow rapidly. As
highlighted in the report, there appeared about 300,000 new rootkit samples in 2014, which
translates into nearly 820 new samples discovered every day[6]! And by the end of 2014, the
total number of rootkits has reached 1.6 million samples. Moreover, antivirus companies are
detecting literally thousands of new variants every day, and they are improving and constantly
changing themselves in order to evade detection and removal [6] [7]. This alarming trend
reveals the disturbing fact that existing rootkit intrusion detection system (IDS) fails to
effectively cover the threat and keep up with the rootkit infections.
 The general IDS of rootkit mainly adopted host-based architecture and the network-based
architecture, which are commonly referred to as HIDS (Host Intrusion Detection System) and
NIDS (Network Intrusion Detection Systems) respectively [8]. HIDS runs inside the
end-system and is able to directly inspect the states and events of the target. Although
achieving high visibility, HIDS is fundamentally limited in its isolation capability and thus has
lower tamper resistance to prevent itself from being infected once the system is compromised.
In contrast, NIDS is deployed outside of an end-system, achieving high attack resistance at the
cost of poor visibility on the internal system states.
 In order to analyze incidents, two broad families of methodologies, named signature-based
detection and behavior-based detection, are available to combine with HIDS or NIDS
architecture[9]. Signature-based detection identifies suspicious samples by comparing
observed events with signatures of known attacks or predefined signatures. It is very
accurately at detecting known threats. However, signature definition and matching may be
expensive to perform. A related issue is that slight variants of well-known attacks cannot be
effectively identified. Attackers can modify existing malware easily using countless methods
to simply bypass publicly and/or privately available signature sets. Behavior-based detection
builds a reference model of the usual behavior (e.g., processor usage level, band width
consumption...) of the monitored system and looks for deviations from this model. It is
effective at detecting previously unknown threats whenever attacks produce a deviation from
the model of normal activity. However, behavioral-based systems are only as good as their
policies.
 In recent years, researchers change the rootkit defense landscape by leveraging recent
advances of virtualization, and propose virtual machine introspection technology to build
IDSes [10] [12] [13]. The vulnerable system runs as VM and VMI-based IDS pulls the
monitoring tools from inside VM to outside. It directly accesses the hardware state and uses

1724 Cui et al.: Lightweight Intrusion Detection of Rootkit with VMI-Based Driver Separation Mechanism

this information to analyze the inner state of VM. Because of isolation with VM, VMI
architecture has high temper-resistance like HIDS. At the same time, VMI’s direct observation
of hardware offers high visibility comparable to that offered by an NIDS. So, VMI-based IDS
provides a more robust view of target VM even in the face of OS compromise. Unfortunately,
this is challenging due to the semantic gap, the difference between low-level bits of hardware
and high-level semantic information of VM.
 In this paper, we present a framework of intrusion detection with VMI-based driver
separation mechanism (VDSM for short). The framework of driver separation is shown as Fig.
1. VDSM provides a light weight technique to bridge the semantic gap. The semantic view
reconstruction is composed of offline phase and online phase. The former takes charge of
semantic information extraction and builds static library of semantics, while the latter takes
charge of semantic view generation and cross-view validation. The two operations are
implemented by BackDriver and FrontDriver in VDSM, respectively. Both drivers are
interrelated in function and independent on implementation.

Driver Separation Mechanism
BackDriver

Static Library
of Semantics

FrontDriver
High-Level Semantics

Extraction
Semantic-View

Generation
Cross-View
Validation

Guest
Virtual

Machine

Monitoring Virtual Machine

Fig. 1. Framework of Driver Separation

 VDSM can overcome the semantic gap challenge and improve the execution efficiency of
intrusion detection. In summary, VDSM makes the following contributions:

• Lightweight. Based on the driver separation mechanism, the reconstruction of semantic
view gets semantic information by directly calling functions encapsulated in ready-made
static library, instead of parsing OS kernel frequently. The static library of semantics has
been built offline before FrontDriver works. It can provide semantic information online
instantly without waiting for semantic extraction. The driver separation
mechanism sacrifices space for time simplifying online operations. The simplified
handling can increase the speed of online processing and reduce the system load. Hence,
our system is lightweight and the efficiency will be verified in later experiments.

• High-fidelity. Our VDSM monitors hardware state of VM, and interprets raw bits into
semantic view according to hardware architecture and OS kernel data structure. As stated
by Pfoh et al., this derived schema is the most reliable method [13]. The execution of any
process requires hardware resources. As a result, it is impossible to bypass hardware.
VDSM captures raw bits in hardware, instead of calling high-level application that may
be cheated by malwares, for intrusion detection to ensure the authenticity of information.
Furthermore, VDSM’s strict isolation from the untrusted VM guarantees it’s high
temper-resistance. Any infected virtual machine can not affect the operation of other
virtual machines because of isolation between them. In other words, VDSM can get real
and detailed inner state of VM during view-generation.

• Portability. The static library containing semantic information is generated by
BackDriver and the standard interface is also provided. Although BackDriver has to face
all kinds of kernel version, it is executed in offline phase and does not interact with the
end-user. The complete kernel semantics in the library can mask the implementation
details between different kernel versions and provide a uniform type of semantic service.
Hence, the static library can be widely used in virtualization platform such as Xen [23],

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1725

KVM [24], and QEMU [25]. The view generation through FrontDriver just interacts with
static library. It is not sensitive to the kernel version and does not need to rely on any
operating system knowledge.

The rest of this paper is organized as follows: Section 2 presents related work in
VMI-based intrusion detection and semantic gap reparation. Next, Section 3 and 4 describe the
design, architecture and implementation of our system. InSection 5, we evaluate the VDSM’s
effectiveness, performanceefficiency and portability. Finally, we summary our conclusions
and outline our future research directions in Section 6.

2. Related Work
VMI provides strong isolation from the VM being monitored, and it has been widely used in
intrusion detection [10][12] [14] [15]. However, the key challenge of VMI-IDS is how to
eliminate the semantic gap. VMI-based intrusion detection is pioneered by Livewire [10], a
framework to do security checking from outside the monitored VM. Livewire is capable of
detecting certain kinds of attacks by inspecting VM’s high-level semantic information, which
is reconstructed by the tool of the Linux kernel crash dump(LKCD) [11].The hardware state
obtained from LKCD is interpreted into OS events through the components of OS interface
library. However, some inherent limitations exist because the OS interface library is tied to a
particular guest OS and the achievement of LKCD is needed to compile the kernel with
debugging symbols.
 In the past several years, a number of researches have examined the inherent semantic gap
challenge and implemented a number of introspection-based technique to mitigate it. Guest
view casting technique of VMwatcher applies the knowledge of OS kernel, especially the
semantic definition of kernel data structure, to interprets the binary resource observed from
VMM [12]. However, such interpretation typically requires detailed, up-to-date knowledge of
OS kernel. For example, to introspect the pid of a running process in a Linux kernel, one has to
traverse the corresponding task_struct to fetch its pid field. The definition of task_struct is
different with different versions of OS. So it is sensitive to OS kernel and not conducive to
system transplantation.
 In fact, acquiring such knowledge is often tedious and time-consuming even for an open
source OS. Many other systems focus on exploring the application of VMI, and providing
ready-made library function to ease the reconstruction of semantic view. LibVMI[16] and VIX
[17] can be directly used to obtain processes or loaded modules of VM. LibVMI is developed
to provide access to the interface of various information such as VM’s internal process list,
network port, opened file and loadable kernel module. However, the view-generation with
libVMI or VIX has to refer the internal documents of the VM to achieve its function. For
example, the process descriptor is located by the system.map file, which is the kernel symbol
table of VM. This means that either libVMI or VIX is dependent to the VM knowledge and it’s
intelligence still needs to be improved.
 AntFarm and Lycosid proposed a statistical technique to bridge the semantic gap [18] [19].
AntFarm counts the actual number of processes by tracking the process lifecycle (such as
process creation, termination and switching) in a VM. It makes use of the paging mechanism
and the memory management unit (MMU) in x86 and SPARC hardware architectures to
identify running processes. The page global directory (PGD)base address of process address
space stores in the CR3 register. The creation, termination and switching of process will
change the value of the CR3 register. AntFarm determines the actual number of processes in

1726 Cui et al.: Lightweight Intrusion Detection of Rootkit with VMI-Based Driver Separation Mechanism

VM according to the number of PGD base address appearing in candidate list of CR3 register.
As a follow-up study of AntFarm, Lycosid detects the existence of hidden processes in VM by
means of hypothesis testing, then identifies them through CPU usage which is calculated
through the least squares regression analysis. Unfortunately, process detection based on
statistical inference may result in false negatives or false positives.
 The above techniques take a great deal of understanding of hardware architectures and OS.
As a result, the use of such approach will always be very specific. Recently, cutting edge
research has begun to focus on stand-alone view-generation. Virtuoso [20] and VMST [21] are
the typical methods that narrow the semantic gap through program code. Virtuoso is a VMI
technique that is not sensitive to OS data structures. The basic idea of Virtuoso is to capture the
instructions of system calls or applications in VM, and then generates introspection-aware
security tools based on these instructions. The tools run out of VM and can achieve the same
function as in VM. The code extraction and code mergence techniques on which Virtuoso
relies do not guarantee 100% reliable, and can only be accessed the data which is obtained
through the OS API, so the limitations of Virtuoso are obvious.
 VMST utilizes online kernel data redirection technology to bypass the hardware status
acquisition and analysis, and automatically enables an in-guest inspection program to become
a VMI tool. VMST depends on system call, interrupt handing and context switch, which
cannot be separated from OS knowledge, so it is sensitive to the kernel version. Moreover,
VMST doesn’t support asynchronous system call and can’t read the memory data which
swapped out to hard disk. In addition, VMST also does not support multicore guest virtual
machine. It is not suitable to the wide range of VMI applications.
 The produced semantic view is commonly used to analyze potential threat. Based on the
semantic view, Livewire decide whether or not the system is compromised by means of its
policy engine. VMwatcher scans the semantic view to examine possible security vulnerability
using existing antivirus software outside VM. However, generality and efficiency of
view-generation cannot be guaranteed. In contrast, VDSM overcomes these two weaknesses.
Reconstruction of semantic view based on prepared library improves the portability as well as
the online processing time.

3. System design
In this section we describe the design of our system. We will first present the major
components of VDSM. Then we introduce the design issues of driver separation mechanism
(DSM for short). In the next section we will delve into the particulars of VDSM, a prototype
system that implements this framework.

3.1 Assumption and threat model
In this work, we assume an underlying x86 architecture running a hypervisor with two kinds of
virtual machines: monitored guest virtual machine (GVM) and security virtual machine
(SVM) in which our tools will be deployed. We also assume a trust worthy hypervisor, based
on the observation that the source code of the hypervisor is much smaller and more reliable
than the code in the existing OSes. Meanwhile, we assume a trusted hypervisor that provides
VM isolation. This assumption is shared by many other VMI-based security research efforts
[12] [14] [15].
 In our work, the rootkit has root privilege access to compromise arbitrary entity and facility
inside the GVM, including OS itself and applications. It can either modify any code or data, or
aims at stealthily maintaining and hiding its presence in GVM to execute its malicious code.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1727

However, based on the isolation of hypervisor, an attacker can only compromise OS kernel or
application in GVM, it cannot break out of SVM and corrupt the underlying hypervisor.

3.2 VDSM overview
Fig. 2 shows the overview of our system. From Fig. 2, it can be seen that the environment of
VDSM typically includes Virtual Hardware, Hypervisor, Virtual Machine and DSM
component. In the following we describe them each.

DomU(GVM)

Memory Page

Virtual Memory
Hypervisor

Physical Hardware

Fi
le

M
od

ul
e

Pr
oc

es
s

Dom0

FrontDriver

Physical Memory
Mapping Module

Semantic View
Generation Module

Cross-View Validation
Module

Internal
Application

High-Level Semantics
Extraction Module

Static Library
of Semantics

BackDriver

DSM

Kernel-
2.x.x

Kernel-
3.x.x

Kernel-
4.x.x

Collection of kernels

1

2

3

4

a

b

c

Fig. 2. Overview of VDSM.

 Virtual Hardware: X86 is the most frequently virtual architecture used in today, and our
work is based on the Intel x86 family of processors. The virtualization instructions set of Intel
VT-x makes the x86 more effective, and provides the environment for running virtual
machines. With the light of the technology of Intel VT, the DSM is transparent to GVMs in our
implementation.
 Hypervisor: Hypervisor sits between the OS and the underlying hardware, and acts as a
bridge between the host and the guests. Hypervisor implements a hardware interface in
software. The interface includes the microprocessor architecture as well as peripherals like
disk, network, and user interface devices. The purpose of a hypervisor is to provide a virtual
environment to run virtual machines.
 Virtual Machine: The VMs running on hypervisor include several GVMs and one SVM. In
our work, the GVM is assumed to be the attack target, and SVM is deployed with our security

1728 Cui et al.: Lightweight Intrusion Detection of Rootkit with VMI-Based Driver Separation Mechanism

tools. SVM monitors the status of GVM through VMI technology and reports the suspicious
behaviors.
 DSM Modules: DSM is the main component of VDSM, it includes two parts of
FrontDriver and BackDriver, implemented by several modules respectively. The details of
DSM will be described below.

3.3 The Working Procedure of DSM
As illustrated in the Fig. 2, DSM is consist of two parts: the FrontDriver and the BackDriver.
Their working procedure is described as follows.
 FrontDriver interacts directly with end-user. It is used for reconstruction of semantic view
and intrusion detection. After the task of intrusion detection starts, the Physical Memory
Location Module firstly locates the hardware position of the current processes and the loaded
modules in the GVM. Then the Semantic View Generation Module starts to build the
high-level semantic view of GVM by parsing the physical memory through the Static Library
generated by the BackDriver. Finally, based on the semantic views built in dom0 and domU,
the Cross-View Validation Module examines the potential threats in GVM.
 BackDriver must be completed before the start of FrontDriver. It plays the role of
generating a Static Library of Semantics, which is used for parsing physical memory by
FrontDriver. The execution of BackDriver is an offline operation, and implemented by means
of High-level Semantics Extraction Module. It extracts the semantic information of OS
internals (including running process list, system call and loaded modules) of GVM by
compiling kernel, then encapsulates all these information into a static library and provides
standard call interfaces. The static library is used to receive request from FrontDriver and
returns the corresponding semantic information. Note that the BackDriver covers different
versions of OS kernel.

4. System Implementation
We have implemented our prototype system of VDSM on x86 architecture and Xen 4.1.2
platform. For generality purpose, VDSM is able to support a variety of Linux distributions. In
the following, we describe the implementation details, with a focus on GVM state
procurement and semantic view reconstruction. Note that VDSM can be easily implemented
on other hypervisors, such as KVM, Qemu and VirtualBox.

4.1 Layout of GVM
The raw memory allocated to GVM can be procured by way of hypervisor. However, the
challenge is that it requires accurate layout of GVM kernel to understand what the physical
memory pages are represented. The layout of GVM is mainly expressed by means of running
processes, loaded modules, opened files, and so on. The process is the most important one to
describe the state of GVM, and we mainly focus on process analysis in this work. Every
process in OS is represented by a process control block [22]. Specifically, it is defined as
task_struct in Linux, which is found in the <linux/sched.h>. All running processes are linked
by a doubly linked list, each process has its own kernel stack which is allocated with the
creation of process.
 As shown in Fig. 3, kernel stack is a 8KB memory area in two consecutive page frames with
the first page frame aligned to a multiple of 213. It contains a small data structure linked to the
process descriptor, namely the thread_info structure, and the kernel code process stack. The

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1729

thread_info structure and the task_struct structure are mutually linked by means of the fields
task and stack, respectively. The figure also shows that the ESP register is a CPU stack pointer
used to address the stack’s top location. The kernel can easily obtain the address of the
thread_info of the process currently running on a CPU from the value of the ESP register.

Fig. 3. Relationship between kernel stack, task_struct, thread_info of aprocess.

 While the task_struct structure contains all the necessary information for representing a
process, such as process ID (pid), process name (comm), process state (state), process memory
management information (mm), list of open files, and pointers to the next and previous process
in the list. Following this pointer, we can further parse the raw memory image and traverse the
whole doubly linked list to reconstruct detailed semantic information of each running process.
Fig. 4 shows the list relationship between these task_struct structures. From the same memory
image, we can also reconstruct a number of other important kernel data structures (e.g., the
system call table, the interrupt descriptor table, and the kernel module list). In this research, we
mainly focus on process tracking.

Fig. 4. Doubly-linked List of task_struct structure.

1730 Cui et al.: Lightweight Intrusion Detection of Rootkit with VMI-Based Driver Separation Mechanism

4.2 Xen memory management
VDSM parse the underlying physical raw memory allocated to GVM and reconstruct
high-level semantic view. However, the main obstacle is to solve the semantic gap between
raw memory and OS internals.
 Xen is consist of virtualization layer and virtual domain[23]. The virtualization layer
consists of hypervisor and privileged VM. In terms of Xen, each VM system is a domain. The
privileged VM is called Dom0 and the others are called DomU. Dom0 is established with the
start of Xen, it has privilege of direct access to the underlying hardware devices, and manages
other domains through interface offered by hypervisor. DomU is generated through Dom0 and
manages the physical resources through the hypervisor. In our system, FrontDriver of DSM is
located in Dom0, and cannot directly get the details of isolated GVM of DomU. The
reconstruction of semantic view requires address translation of binary resources observed
from hypervisor.
 Xen manages hardware resources through hypervisor. In order to provide VMs with
zero-based and continuous memory space, hypervisor introduces a new layer of address space,
named VM physical address space, between VM virtual address space and host address space.
Therefore, two address translations are needed when access to physical memory: from guest
virtual address (GVA) to guest physical address (GPA) translation and from GPA to host
physical address (HPA)translation. That is to say the translation of GVA ->GPA->HPA is
necessary. Fortunately, The virtual memory management unit(VMMU) of hypervisor uses a
technology called Shadow Page Table (SPT) to achieve the direct translation of GVA ->HPA,
hence improve the efficiency of memory access.

4.3 System implementation
As mentioned in Section III, VDSM is designed to perform lightweight detection of rootkit. As
a result, our prototype is implemented in two phases: offline phase that generates static library
of GVM OS kernel, online phase that reconstructs semantic view and perform intrusion
detection. The static library is used to provide high-level semantic information of GVM for
parsing raw memory during online phase. The two phases are corresponding to BackDriver
and FrontDriver in Fig. 2, respectively .

4.3.1 Static library of OS kernel
The static library of OS kernel mainly contains two parts: the semantic information of kernel
and some functions. The semantic information includes some data types and offsets of certain
entries in specific data structures such as task_struct and mm_struct. The offsets are used to
locate the virtual address of GVM, and the data types are used to determine how many bytes to
be read in physical memory and which kind of high-level semantic information should be
reconstructed outside GVM. The functions in static library are used to generate semantic
information and capture specific physical memory.
 Fig. 5 shows the generation of static library. In this algorithm, The GetOffset function (lines
5-8) returns the offset of the member in struct task_struct, such as pid, comm, tasks, etc. Note
that this function should be written into a source file including specific header files that
contains specific data structures such as task_struct. The source file is placed into kernel
source for compiling and the returned results are data offsets we need. The ReadAddr function
(lines 9-14) gets the address value of the first parameter src. The GetNext function (lines
15-19) is able to get the tasks address of the next process according to the tasks address of
current process in the doubly-linked list. The Gettask_struct function (lines 20-26) is used to
obtain the address of task_struct.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1731

Fig. 5. Algorithm 1: generation of static library

 Considering the principle of software reuse, we use a command to produce static library
libsl.a, a common intermediate result. We can achieve an executable file by compiling libsl.a
with the object programs in FrontDriver. The library makes the VDSM more modular, it is
easier to recompile, and convenient to upgrade. The libsl.a contains all the functions that will
be used in the FrontDriver. Using a function name and the appropriate parameters, the
FrontDriver directly calls the function in libsl.a and obtains the corresponding information.
 VDSM provides a generic, systematic methodology that can be applied to various OSes and
virtualization platforms. Moreover, different versions of the same OS may have subtle
variations for the same kernel-level data structure. The difference over the same OS adds
additional complexity to semantic view reconstruction. However, the VDSM methodology
remains effective despite these differences, as shown by our evaluation in Section 5.

4.3.2 Reconstruction of semantic view
In algorithm 2 (Fig. 6), the prepared static library and the user intention of end-user is
necessary. By the way, user intention in this work refers to process trace. The reconstruction of
semantic view works as follows. First, the physical memory corresponding to the current
process is located by ESP of GVM stack pointer and SPT function (lines 2-4). Second, the
static library is invoked to get the offset of tasks member in struct task_struct. Note that the
hmatasks is the host machine address corresponding to the tasks, and the gva tasks is the guest
virtual address of the tasks. Thus the address pointing to the next task_struct is determined
(lines 5-8). Third, VDSM performs the traversal of process list (lines 9-19). For each process,
VDSM gets the process ID, name and other information according to user intention specified
by end-user, and the operation is done by ParseItem function (lines 11-16). Finally,
information of all processes is achieved and output.

Fig. 6. Algorithm 2:reconstruction of semantic view

1732 Cui et al.: Lightweight Intrusion Detection of Rootkit with VMI-Based Driver Separation Mechanism

4.3.3 Cross-view validation
Cross-view validation for intrusion detection has been studied and implemented in various
virtualization platform. The key aspect of cross-view validation approach is to compare the
VMI-level semantic view with GVM OS-level view. In our system, right before we take the
process snapshot, we run some commands, such as ps, pstree or top, and save their result to a
file. Then we attach the snapshot and run VDSM in SVM to reconstruct semantic view based
on the observation and analysis of GVM address space. Finally, the two output files are
syntactically compared to identify the possible attack.
 VDSM is deployed out of GVM and performed on virtualization level, so is trusted and has
high temper-resistance. The extracted semantic view should not be compromised even if the
rootkit is existed in GVM. In other words, VDSM improves the detection accuracy as well as
temper-resistance without losing the visibility on internal system states.

5. Experiments and evaluation
In this section, we will evaluate VDSM using a number of different criteria: effectiveness,
performance and portability. To evaluate the effectiveness of VDSM, we look at the
high-fidelity of semantic view reconstruction and the accuracy of rootkit detection. Next we
investigate the time performance overhead of BackDriver and FrontDriver, and further
compare the efficiency of VDSM with several off-the-shelf anti-virus tools. Finally we will
discuss the portability on the diversity of OS distribution and kernel version.

5.1 Experimental environment
We measured effectiveness, performance and portability on various of OS and kernel versions.
The host machine contains Intel Core i7 processor with 4 cores running at frequency 2.93GHz,
4GB memory, and 1TB hard disk. The SVM OS is a 64-bit Ubuntu 12.04 with 3.2.0-23 linux
kernel. The GVMs are different distribution of 64-bit linux OS and include a varietyof 13
kernel versions. All GVMs are conFig.d with 1 virtual CPU and 1GB memory. Table I lists the
detailed configuration. In all experiments, the GVM are pinned to run on separate CPU cores
in the host (using the Linux taskset command).

5.2 Effectiveness
Our goal is to provide an external intrusion detection technique, to achieve the same effect as
that running in-VM. To this end, as presented in Table 1. We took 13 commonly used OS
version to demonstrate its practicality and effectiveness of VDSM prototype. For convenience
of explanation, we took Ubuntu12.04 as example to reconstruct external semantic view for
initial process, new process and hidden process.

 Table 1. Experimental environment

VM CPU Memory OS Dist Time Kernel
SVM 4 4GB Ubuntu12.04 2012.04.26 3.2.0-23

GVM11 1 1 GB Ubuntu10.04 2010.04.29 2.6.32-21
GVM12 1 1 GB Ubuntu12.04 2012.04.26 3.2.0-23
GVM13 1 1 GB Ubuntu14.04 2014.04.17 3.13.0-24
GVM21 1 1 GB Debian7.0.0 2013.05.06 3.2.0-4
GVM22 1 1 GB Debian7.3.0 2013.12.16 3.2.0-4
GVM23 1 1 GB Debian7.6.0 2014.07.14 3.2.0-4

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1733

GVM31 1 1 GB CentOS6.3 2012.07.09 2.6.32-279
GVM32 1 1 GB CentOS6.4 2013.03.09 2.6.32-358
GVM33 1 1 GB CentOS6.5 2013.12.01 2.6.32-431
GVM41 1 1 GB Fedora 16 2011.11.08 3.1.0-7
GVM42 1 1 GB Fedora 17 2012.05.29 3.3.4-5
GVM43 1 1 GB Fedora 18 2013.01.15 3.6.10-4
GVM44 1 1 GB Fedora 19 2013.07.02 3.9.5-301

5.2.1 High-fidelity of semantic reconstruction
The first experiment observes the effect of semantic view reconstruction. VDSM can get not
only the initial processes of GVM, but also the variation of processes. The initial process
detection has been introduced in ModSG[26], an early stage of our research, so the
presentation is omitted. Here we just describe the hidden process detection.
 We describe our experiment with the adore-ng rootkit, an advanced Linux kernel rootkit
that will directly replace certain kernel-level function pointers to hide files and processes [27].
Fig. 7 is a screenshot showing an adore-ng infection. Within the Fig. 7, the right terminal
window shows the inside of GVM, where the adore-ng kernel-level module (LKM) is first
loaded (insmod adore-ng.ko). A user-level program called ava is used to control the LKMs
functionality. Then, a backdoor daemon is executed (/root/demo/backdoor). After that,
adore-ng is instructed to conceal the existences of a current process named virus whose pid is
12634 (ava i 12634). As revealed in the same terminal window, the outputs from the
commands ps is already manipulated to conceal the existences of process with pid 12634.

Fig. 7. Hidden process detection

 The external view of the GVM is shown on the left side of Fig. 7, and the window
enumerates current running processes inside GVM. From the window, the internally-hidden
process virus with pid 12634 is visible with VDSM.This experiment further demonstrates that

1734 Cui et al.: Lightweight Intrusion Detection of Rootkit with VMI-Based Driver Separation Mechanism

the semantic view reconstructed by VDSM cannot be manipulated by the rootkit running
inside GVM. As such, view comparison effectively exposes the existence of a rootkit (even if
the hidden file and hidden process have unsuspected names).
 Not only the hidden process can be found outside VM, the hidden file, module also can be
found. Besides, all detail information about the hidden process can be captured including
process code, mapped library, execution path and so on. Fig. 8 is the process code captured by
VDSM. The left of the window is the code captured outside VM and the right is the code
generated by disassembling (objdump -S xx) in GVM. Two kinds of code are completely
same according to the left window. The captured code describing the action feature of the
process can be used in memory forensics.

Fig. 8. Getting process code

5.2.2 Intrusion detection of rootkit
 VDSM can bring up the capability of rootkit detection by external semantic view of GVMs.
We have successfully identified 6 real-world rootkits by VDSM [28] [29]. On the country,
some off-the-shelf antivirus software can hardly observe the existence of these rootkits.
Compared with traditional antivirus software VDSM is deployed ouside GVM making it hard
to be bypassed. Typically, rootkits hide kernel objects by hijacking the kernel function's
control flow. For example, a rootkit named "xingyiquan" can hide a backdoor process
(xingyi_bindshel) and specfic files (installation files and binary files) through hijacking
operation funtions in "proc" file system. So the traditional scurity tools can not detect the
hidden objects. Different with them, VDSM reads the information in hardware instead of

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1735

calling functions in GVM. The detection results is shown as Fig. 9. The backdoor process
xingyi_bindshel is hidden by the rootkit xingyiquan in GVM which is presented in right
window. There is no process 1624 between 1433 and 1631. While, the hidden backdoor whose
pid is 1624 can be detected by vdsm in SVM.

Fig. 9. Detecting backdoor hidden by rootkit

 We have so far experimented with 6 linux rootkits, and view comparison-based scheme is
able to detect all the rootkits tested and pinpoint the corresponding hidden processes. Due to
the lack of space, we only present 6 of experiments in detail. Table II shows the detection
results compared with the existing antivirus tools in GVM.

Table 2. Comparison with off-the-shelf antivirus tools
 adore-ng 0.56 kbeast v1 suterusu v1 f00lkit diamorphine xingyiquan

VDSM √ √ √ √ √ √
Avast 1.3.0 - - - - - -
AVG 2013.3118 - - √ - √ -
Avira 7.6.0.10 - - - - - -
chkrootkit 0.51 √ - - - - -
ClamAV 0.99.2 - - - √ - -
F-PROT 6.2.39 - - - - √ -
rkhunter 1.4.2 - √ - - - -

 In experiment every rootkit was detected 100 times to test the detection accuracy. The
results show that the detection accuracy is more than 98%. Because of the unconsistency of
VM state[30], the detection result may appear garbled with a small probability. According to
the description in [30] the unconsistency of VM state can be classified into intrinsic
inconsistencies and extrinsic inconsistencies, and the former can not be avoided. Fortunately,
VDSM is fast enough to reduce the probability of unconsistency of VM state.

5.3 Performance Overhead
In this section, we present the performance measurement results. We note that VDSM is
operated outside of a VM. As a result, it will not affect the normal run of a GVM even when it
is being examined. To evaluate the performance overhead of our system, we measure two

1736 Cui et al.: Lightweight Intrusion Detection of Rootkit with VMI-Based Driver Separation Mechanism

different aspects: the execution time of VDSM as well as efficiency compare with some
off-the-shelf antivirus software. In the following, we present two sets of measurement results.

5.3.1 Execution time of VDSM
The first aspect is to evaluate execution time of VDSM. To the end, we estimate the offline
generation time of static library and the online scanning time of GVMs, respectively. In other
words, we calculate the compilation time of BackDriver and the semantic view reconstruction
time of FrontDriver. In particular, we choose all 13 GVM systems listed in Table 1 to test the
system efficiency of VDSM.
 Fig. 10 shows the experimental result of offline performance. The horizontal axis represents
13 kinds of GVM OS environment, and the vertical axis represents the average value of 10
times compilation time corresponding to the GVM kernel. As shown in Fig. 9, we could see
the time of generating static library is not more than 65 seconds. This shows the execution of
BackDriver does not cause too much overhead. Moreover, it is an offline pre-processing
operation, it would not affect performance of the online scanning of GVM.
 Fig. 11 shows the reconstruction time of external semantic view. The horizontal axis
represents the GVM systems, and the vertical axis represents the average value of
reconstruction time. It is interesting to see that the scanning time of GVM is about 170 to 190
milliseconds. This proves that VDSM costs little performance overhead. On the other hand,
the scanning time is so short that the guest user would not realize the pause and restart of GVM.
So the online reconstruction of semantic view does not affect the user experience.
 Moreover, we verify the performance overhead of scalability of VDSM. Fig. 12 shows the
execution time of external semantic view reconstruction with different number of processes in
13 kinds of OS environment. The horizontal axis is the number of processes, and the vertical
axis is the average of 10 times semantic reconstruction time. From Fig. 12, we can
conclude,(1) The semantic reconstruction time changes linearly with the number of processes.
(2) Online semantic reconstruction does not affect the user experience. Even if the number of
processes is 1000, online execution time is only about 300 milliseconds.

Fig. 10. Compilation time of stalic library.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1737

Fig. 11. The reconstruction time of external semantic view.

Fig. 12.Effect of process number on semantic view reconstruction.

5.3.2 Comparison with off-the-shelf antivirus tools
 The second aspect of experiment is to compare the online scanning time of VDSM with
several existed in-host antivirus software. In particular, we choose 7 different antivirus
software systems and each one performs an internal scan. Our experiments are performed on
Ubuntu12.04 GVM system, the GVM12 environment (1GB memory, 1 vCPU and 10GB disk),
as shown in Table 1.
 Table III reports the execution time of VDSM and some in-host antivirus tools. We can see
that VDSM is the fastest and only takes 32 microseconds to perform intrusion detection. Here,
the scanning time of VDSM include the time of semantic view reconstruction and cross-view
validation. On the other hand, rkhunter is the most time-consuming in all of above tools and it
takes about 24 minutes. Different from VDSM which just focuses on physical memory,

1738 Cui et al.: Lightweight Intrusion Detection of Rootkit with VMI-Based Driver Separation Mechanism

rkhunter has more comprehensive scope of scanning. It scans the entire system and supports
network port scanning beside rootkit signature. Although time-consuming, rkhunter is more
effective than others. It is the only one to detect kbeast rootkit successfully, as is indicated in
Table 2. The other antivirus software, such as avast, AVG, Avira, chkrookit, ClamAV and
F-PROT, can either scan the entire system, or can scan a specified directory. In our
experiments, these tools scan the installation directory of rootkits. The scanning time is less
than 30 seconds.

Table 3. Comparison with in-host antivirus tools

 Scanning time
VDSM 32ms
Avast 1.3.0 401ms
AVG 2013.3118 12m27s
Avira 7.6.0.10 1s
chkrootkit 0.51 28.871s
ClamAV 0.99.2 8.617s
F-PROT 6.2.39 1s
rkhunter 1.4.2 24m15s

 It is interesting to notice that the internal examination takes longer scanning time than
VDSM, a result that sounds counterintuitive. However, considering the potential disk I/O
slowdown introduced by virtualization as well as the fact that VDSM only examine the
physical memory related to GVM processes, the shorter external scanning time of VDSM is
actually reasonable.
 Besides, we also comapred VDSM with oher out-of-box techniche. Table IV reports the
comparison between VDSM and other out-of-box antivirus tools in three respects:
performance, portability, and effctiveness. G means 'good'; A means 'average'; P means 'poor'.
Because of the driver separation mechanism, VSDM need not interact with live kernel in
semantic reconstruction. That is to say the complex action has been devided into two patrs and
one part has been done before another starts. As a result VSDM has a higher performance.
Moreover, the static library provides standard interfaces and contains all kinds of kernel
version making VDSM more general.

Table 4. Comparison with out-of-box antivirus tools

 Performance Portability Effectiveness
VDSM G G G
Livewire P P A
VMwatcher A A G
LibVMI G P G
Antfarm P P A
Virtuoso A G P
VMST A P G

5.4 Portability
Finally, we discuss how general (OS-agnostic) our design is, regarding different OS kernels.
Our VDSM is implemented by the cooperation of FrontDriver and BackDriver. The key

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1739

technique point of FrontDriver is to locate and parse the physical memory allocated to the
target GVM, as described in algorithm 2.
 Starting from kernel 2.6.20, Linux uses a global variable to store the current task. In
particular, thread_info has a pointer to task_struct, while task_struct also has a pointer
pointing to thread_info, which is usually allocated in the bottom of a kernel stack. Therefore,
each time for the kernel to fetch the current task, it first gets the thread_info by bit-masking
ESP with 8192 and then dereferencing the task_struct field in thread_info. In fact, almost
systems adopt the kernel version over 2.6.20 today. So the location of physical memory is fully
transparent to the Linux kernel starting from 2.6.20.
 On the other hand, to parse the physical memory relies the OS kernel knowledge. In our
experiments, we selected a wide range of Linux distributions, including Ubuntu, Debian,
CentOS and Fedora, with a variety of 13 different kernel versions, as shown in Table 1. Each
kernel image is different because the source code of kernel is different. For example, the order
and the offset of member in task_structis different. Take offset of pid as an example, the offset
is 0x4a8 in CentOS6.4, 0x2ac in Ubuntu12.04, 0x1e4 in Debian7.3.0, 0x2a4 in Fedora18. Any
method to repair the semantic gap could not ignore these differences. Fortunately, VDSM uses
BackDriver to hide these differences. BackDriver encapsulates properties and implementation
details of corresponding object, opens the public interface to access OS semantic information
to FrontDriverin the form of static library. During semantic view reconstruction, system only
interact with FrontDriver to obtain the necessary kernel information. In other words, system
just calls functions to accomplish reconstruction. For system user, the design of VDSM shields
the differences of kernel versions, and thus enhances the versatility and portability.

6. Conclusion
 We proposed VDSM, a lightweight and general approach for intrusion detection on
virtualization platform. VDSM leverages driver separation mechanism and the key idea is to
perform semantic view generation and OS semantics extraction with different modules. This
modular architecture improves the efficiency of online processing as well as avoids semantic
gap problem. We implemented VDSM and our experiments of the VDSM prototype on 13
Linux kernels demonstrate its effectiveness and portability. Moreover, our evaluation with 7
existing antivirus software further shows the performance efficiency of VDSM. While the
main limitation of VDSM is that it assumes the hypervisor is absolutely safe. If hypervisor is
infected every operation of VDSM becomes untrusted.
 In future, we will develop our research on the security of hypervisor and enrich the
functions of semantics extraction, such as system call and network connection, to achieve the
fine-grained monitoring and to improve rootkit detection capability. Besides, based on VDSM
we can also develop research on memory forensics. The hidden process binary code section
we have captured can be translated into assembly code by reverse engineer and recorded as
electronic evidence. Our goal is to create a security system that can monitor, pre-alert, and
dispose of malware.

Acknowledgement
This work was supported by the National Natural Science Foundation of China(31371340),
the Foundation of President of Hefei Institutes of Physical Science, Chinese Academy of
Sciences (YZJJ201329), and the National Key Technologies Research and Development
Program of China (No: 2016YFB0502604).

1740 Cui et al.: Lightweight Intrusion Detection of Rootkit with VMI-Based Driver Separation Mechanism

References
[1] Bhushan Jain, Mirza Basim Baig, Dongli Zhang, Donald E. Porter and Radu Sion, “Sok:

Introspections on trust and the semantic gap,” in Proc. of The 2014 IEEE Symposium on Security
and Privacy, pp.605-620, May 18-21,2014. Article (CrossRef Link).

[2] Pearce M, Zeadally S and Hunt R. “Virtualization: Issues, security threats, and solutions,” ACM
Computing Surveys (CSUR), vol.45, no.17, pp.94-111, February, 2013. Article (CrossRef Link).

[3] Laniepce S, Lacoste M, Kassi-Lahlou M, et al., “Engineering intrusion prevention services for iaas
clouds: The way of the hypervisor,” in Proc. of the 2013 IEEE Seventh International Symposium
on Service-Oriented System Engineering, pp.25-36, March 25-28, 2013. Article (CrossRef Link).

[4] Egele M, Scholte T, Kirda E, et al., “A survey on automated dynamic malware-analysis techniques
and tools,” ACM Computing Surveys (CSUR), vol.44, no.6, pp.1-42, February, 2012.
Article (CrossRef Link).

[5] Davis M,Bodmer S and Lemasters A,“HACKING EXPOSED MALWARE AND ROOTKITS,”
McGraw-Hill Osborne Media, 2009.

[6] McAfee Labs Threat Report,2015.Available:
http://www.mcafee.com/cn/resources/reports/rp-quarterly- threat-q1-2015.pdf.

[7] Internet Security Threat Report, vol.20, 2015. Available:https://www4.symantec.com/mktginfo/
whitepaper/ISTR/21347932GA-internet-security-threat-report-volume-20-2015-social v2.pdf.

[8] Vasilomanolakis E, Karuppayah S, Muhlhauser M and Fischer M, “Taxonomy and Survey of
Collaborative Intrusion Detection,” ACM Computing Surveys, vol.47, no.55, pp.55-88, July, 2015.
Article (CrossRef Link).

[9] Kabiri P, Ghorbani A, “Research on Intrusion Detection and Response: A Survey,” International
Journal of Network Security, vol.1, no.2, pp.84-102, September, 2005.

[10] Garfinkel T, Rosenblum M., “A Virtual Machine Introspection Based Architecture for Intrusion
Detection,” in Proc. of The Network & Distributed Systems Security Symposium, pp.191-206,
2003.

[11] LKCD Linux Kernel Crash Dump[EB/OL]. Available:http://lkcd.sourceforge.net/.
[12] Jiang X, Wang X, Xu D, “Stealthy malware detection through vmm-based out-of-the-box semantic

view reconstruction,” in Proc. of The 14th ACM conference on Computer and communications
security, pp.128-138, 2007. Article (CrossRef Link).

[13] Pfoh J, Schneider C, Eckert C, “A formal model for virtual machine introspection,” in Proc. of The
1st ACM workshop on Virtual machine security, pp.1-10, 2009. Article (CrossRef Link).

[14] Carbone M, Conover M, Montague B, et al., “Secure and Robust Monitoring of Virtual Machines
through Guest-Assisted Introspection,” Research in Attacks, Intrusions, and Defenses, vol.7462,
pp.22-41, 2012. Article (CrossRef Link).

[15] Graziano M, Lanzi A, Balzarotti D, “Hypervisor memory forensics,” in Proc. of International
Workshop on Recent Advances in Intrusion Detection, vol.8145, pp.21-40, 2013.
Article (CrossRef Link).

[16] Xiong H, Liu Z, Xu W, et al., “Libvmi: a library for bridging the semantic gap between guest OS
and VMM,” Computer and Information Technology (CIT), in Proc. of The IEEE 12th
International Conference on IEEE, pp.549-556, 2012. Article (CrossRef Link).

[17] Hay B, Nance K,” Forensics examination of volatile system data using virtual introspection,” ACM
SIGOPS Operating Systems Review, vol. 42, no.3, pp.74-82, 2008. Article (CrossRef Link).

[18] Jones S T, Arpaci-Dusseau A C, Arpaci-Dusseau R H, “Antfarm: Tracking Processes in a Virtual
Machine Environment,” in Proc. of The 2006 USENIX Annual Technical Conference, pp.1-14,
2006. Article (CrossRef Link).

[19] Jones S T, Arpaci-Dusseau A C, Arpaci-Dusseau R H, “VMM-based hidden process detection and
 identification using Lycosid,” in Proc. of The fourth ACM SIGPLAN/SIGOPS international
 conference on Virtual execution environments, pp. 91-100, 2008. Article (CrossRef Link).

[20] Dolan-Gavitt B, Leek T, Zhivich M, et al.. “Virtuoso: Narrowing the semantic gap in virtual
machine introspection,” in Proc. of The 2011 IEEE Symposium on Security and Privacy,
pp.297-312, May 22-25, 2011. Article (CrossRef Link).

http://dx.doi.org/doi:10.1109/SP.2014.45
http://dx.doi.org/doi:10.1145/2431211.2431216
http://dx.doi.org/doi:10.1109/SOSE.2013.27
http://dx.doi.org/doi:10.1145/2089125.2089126
http://dx.doi.org/doi:10.1145/2716260
http://dx.doi.org/doi:10.1145/1315245.1315262
http://dx.doi.org/doi:10.1145/1655148.1655150
http://dx.doi.org/doi:10.1007/978-3-642-33338-5_2
http://dx.doi.org/doi:10.1007/978-3-642-41284-4_2%C2%A0
http://dx.doi.org/doi:10.1109/CIT.2012.119.%20547
http://dx.doi.org/doi:10.1145/1368506.1368517
http://dx.doi.org/doi:10.1.1.161.8066
http://dx.doi.org/doi:10.1145/1346256.1346269
http://dx.doi.org/doi:10.1109/SP.2011.11

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1741

[21] Fu Y, Lin Z., “Space traveling across vm: Automatically bridging the semantic gap in virtual
machine introspection via online kernel data redirection,” in Proc. of the 2012 IEEE Symposium on
Security and Privacy, pp.586-600, May 20-25, 2012. Article (CrossRef Link).

[22] ROBERT L. Linux Kernel Development,New York: Mac Millan Computer Publication, 2005.
[23] The Xen Project Power. [online] Available: http://www.xenproject.org/
[24] KVM. [online] Available: http://www.linux-kvm.org/page/Main Page
[25] QEMU. [online] Available: http://wiki.qemu.org/Main Page
[26] Cui C, Wu Y, Li P and Zhang X., “Narrowing the semantic gap in virtual machine introspection,”

vol.36, no.8, pp.31-37, 2015.
[27] Adore-ng. [online] Available: http://stealth.openwall.net/rootkits/
[28] KBeast. [online] Available: https://packetstormsecurity.com/files/108286/ipsecs-kbeast-v1.tar.gz
[29] Suterusu. [online] Available: https://github.com/dschuermann/suterusu
[30] Suneja S, Isci C, De Lara E, et al., “Exploring VM Introspection: Techniques and Trade-offs,” Acm

Sigplan Notices, vol. 50, no.7, pp.133-146, 2015. Article (CrossRef Link).

Chaoyuan cui born in 1972. PhD, associate professor. His main research direction
includes system virtualization, architecture of cloud computing, information and
communication security.

Yun Wu born in 1974. PhD, associate professor. Her main research direction includes
system virtualization, architecture of cloud computing, data mining and machine
learning.

Yonggang Li born in 1988, Ph.D. Candidate. His current research interests include
operating system security, virtualization and cloud computing.

Bingyu Sun born in 1974. PhD, professor. His main research direction includes, data
mining and machine learning.

http://dx.doi.org/doi:10.1109/SP.2012.40
http://dx.doi.org/doi:10.1145/2817817.2731196

