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Abstract 
 

In recent times, the Internet of Things (IoT) has rapidly emerged as one of the most influential 
information and communication technologies (ICT). The various constituents of the IoT 
together offer novel technological opportunities by facilitating the so-called “hyper-connected 
world.” The fundamental tasks that need to be performed to provide such a function involve 
the transceiving, storing, and analyzing of digital data. However, it is challenging to handle 
voluminous data with IoT devices because such devices generally lack sufficient 
computational capability. In this study, we examine the IoT from the perspective of security 
and digital forensics. SQLite is a light-weight database management system (DBMS) used in 
many IoT applications that stores private information. This information can be used in digital 
forensics as evidence. However, it is difficult to obtain critical evidence from IoT devices 
because the digital data stored in these devices is frequently deleted or updated. To address this 
issue, we propose Schema Pattern-based Recovery (SPaRe), an SQLite recovery scheme that 
leverages the pattern of a database schema. In particular, SPaRe exhaustively explores an 
SQLite database file and identifies all schematic patterns of a database record. We 
implemented SPaRe on an iPhone 6 running iOS 7 in order to test its performance. The results 
confirmed that SPaRe recovers an SQLite record at a high recovery rate. 
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1. Introduction 

The Internet of Things (IoT) has emerged in recent times as one of the most dominant 
information and communication technologies (ICT) [1]. The IoT has consistently been 
highlighted as one of the top 10 strategic technologies in the Gatner, Inc. reports since 2012. 
Indeed, we are at the threshold of the so-called “hyper-connected world,” where many objects 
that surround us will be on computer networks in one form or another. This phenomena is now 
called the Internet of Everything (IoE)—a network of networks where billions of connections 
create unprecedented opportunities as well as new risks [2]—as it embraces capabilities such 
as context awareness, greater processing power, and energy independence, as well as more 
people, places, and new types of information. 
The primary constituents of the IoT, such as smartphones, tablets, wearable devices, smart 
TVs, and automobiles, communicate with one another. The components of the IoT together 
provide comprehensive human welfare services through closely connected networks with no 
mutual interference, where this activity goes largely unrecognized by most people. The 
fundamental tasks that need to be executed in order to provide such a function involve the 
transceiving, storing, and analyzing of digital data.  
It is challenging to handle the voluminous data involved in IoT by using IoT devices because 
such devices generally lack sufficient computational capability. Since IoT devices are 
designed to be portable and energy efficient, they typically use slow CPUs and limited 
memories, and are sometimes even not equipped with power supplies [3]. Since a large 
amount of efficient storage is difficult to install on IoT devices, SQLite is often used as 
primary storage. SQLite [4] is a prominent light-weight database management system (DBMS) 
used in many IoT applications, such as Android [5], iOS [6], and Skype [7]. Furthermore, such 
commonly used Web browsers as Firefox, Chrome, and Safari use SQLite. SQLite is a 
self-contained, serverless, and transactional database engine that many light-weight 
applications incorporate as their primary storage.  
Digital forensics [8] is a branch of forensic science encompassing the recovery and 
investigation of material found in computer devices. Recent advances in Internet technology 
have caused the definition of digital forensics to be expanded to encompass an investigation 
into all devices capable of storing digital data, such as smartphones, surveillance cameras, 
digital recorders, sensors, network switches, and black boxes. Legally critical evidence, such 
as the video of a crime, the footprint of a suspect, or a penetrating (hacking) route, can be 
found through such digital data. 
However, it is difficult to obtain critical evidence from IoT devices because digital data stored 
in such devices is frequently deleted or updated. For example, smartphones save private 
information, such as recent phone call records, emails, text messages, and access history in 
their primary nonvolatile storage, i.e., the DBMS. Such data can be accidentally deleted by 
smartphone users. Moreover, criminals (or suspects) may try to hide their identity or digital 
footprint by erasing records that implicate them in an illegal activity. Fortunately, there are 
several techniques to recover deleted DBMS data.  
Several approaches to recover deleted SQLite data have been proposed [9-13]. The pioneering 
research in SQLite recovery was conducted by Pereira et al. [9], who introduced a recovery 
scheme for the Firefox Web browser. The scheme leveraged a journal file that is utilized in 
data transfer in SQLite. Lee et al. proposed a method to recover deleted data in the overflow 
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zone [10]. This method enabled the recovery of deleted data located in an unallocated area of 
an SQLite database file.  
However, prevalent approaches to SQLite data recovery cannot recover an individually 
deleted record. Since they rely on the structure of an SQLite database file, deleted records can 
be recovered only in batches. Recovering a separately deleted record is particularly important 
for digital forensics because criminals (or suspects) might typically steal a specific item of 
record instead of the entire data to avoid arousing unnecessary suspicion among 
law-enforcement agencies. However, it is difficult to recover an individually deleted record 
for the following reasons: (i) The record often cannot be accessed via a logical SQLite pointer. 
We refer to such data as unreachable. (ii) Even the part of an SQLite database file where a 
deleted record was previously located can be physically replaced. We refer to such deletions as 
irreversible.  
In this paper, we propose Schema Pattern-based Recovery (SPaRe), an SQLite recovery tool 
that leverages a database schema pattern. In particular, SPaRe exhaustively explores an 
SQLite database file and identifies each schema pattern of a database record. The identified 
schema patterns are then utilized to locate records that are unreachable and partially 
irreversible. SPaRe parses each scratch of a database file to determine if it contains a record by 
comparing it with the SQLite database schema pattern identified beforehand. We implemented 
SPaRe on an iPhone 6 running iOS 7 and tested it through extensive experiments. The results 
revealed that SPaRe can accurately recover every record found in a database file. 
The remainder of this paper is organized as follows: Section 2 contains a review of related 
work in the area, whereas Section 3 and 4 contain details of the data structure of SQLite, where 
a key principle needed to understand our recovery scheme is introduced. Section 5 is devoted 
to a description of the design and implementation of SPaRe, and Section 6 contains an 
assessment of our scheme. Finally, we offer our conclusions in Section 7.  

2. Related Work 
Related work regarding SQLite recovery broadly falls in the following three areas.  
 

2.1 Data Recovery using .Journal File 
SQLite creates a .journal file as an intermediate product while processing transactional 
database queries. This file temporarily stores data for intermediate database processing before 
an actual record is written to the SQLite database file. Pereira et al. [9] proposed a method that 
exploits this file to recover a deleted record. To the best of our knowledge, this pioneering 
work was the first attempt in SQLite recovery. The work in this study inspired several 
approaches that utilize a transactional SQLite recovery technique. Unlike [9], our approach 
relies on the recognition and matching of a database schema pattern. 
 

2.2 Recovery by leveraging SQLite Database File Structure  
Jeon et al. [11] thoroughly analyzed an SQLite database file structure and noted that deleted 
records are re-located into unallocated space. Although the method proposed in [11] quickly 
explores the entire unallocated space through a pointer in the SQLite page header, it cannot 
identify a deleted record located in the free block. A deleted record in the free block is 
typically generated by the separate deletion of a record. The recovery of a record of this type is 
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particularly important because the deletion of all data seldom occurs in practice. However, our 
approach can facilitate access to the free block, and exhaustively explores every database file 
scratch to find all recoverable records. One may object that an exhaustive search of all the 
memory is expensive. However, we believe that accuracy and completeness are more 
significant than computational complexity, especially for information security and digital 
forensics.  

2.3 SQLite Logging File 
SQLite writes each transactional operation to a separate logging file. The goal of this logging 
function is to guarantee integrity during each transaction. Delta-WAL [13] leverages the 
logging file to perform SQLite recovery. In SQLite, if one or more records are updated, all 
data, i.e., all records, is re-written. This wasteful update mechanism is improved upon in [13]. 
Only updated record(s) are written to the logging file, and thus the size of the file is reduced in 
Delta-WAL [13]. However, Delta-WAL focuses on preserving the integrity of a database 
transaction and, hence, is orthogonal in purpose to our work here. Our proposed scheme can be 
extended to utilize a logging file. This will provide an additional opportunity to recover an 
irrecoverable record. The consideration of this extension is postponed until future work.   

3. Analysis of SQLite Database File Format 

3.1 SQLite Database File Structure 
 

 

Fig. 1. SQLite Database File Structure 
 
Fig. 1 shows the structure of an SQLite database file, which is divided into several areas of 
equal size, each of which is called a page. The first page is reserved as an SQLite database file 
header. Except for the first page, each page consists of a page header, a cell pointer array, 
unallocated space, and cell content area, as shown in Fig. 1. A page is implemented with a 
B-tree data structure. A database record is physically stored in a B-tree node, called a cell. A 
cell is located in the cell content area, and SQLite accesses it via a cell pointer located in the 
cell pointer array. Note that a cell is placed in reverse order (see the index in the cell content 
area). Therefore, the unused area in a page, i.e., the unallocated space, can be located in the 
middle. The size of the unallocated space is variable. 
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3.2 SQLite Data Type 
The current implementation of SQLite supports the following data type: null, signed integer, 
real (IEEE 754-2008 64-bit floating-point number), and text (string and blob). Each data type 
is designed to consume a minimal amount of memory because SQLite is often utilized in 
light-weight applications. Table 1 summarizes SQLite’s data types.  
  

Table 1. SQLite data type 
Storage class Serial types Content Size (Bytes) 

Null 0 0 
Signed Integer 1~6 1~4, 6, 8 

Real 7 8 
Text (Blob) N ≥ 12 and even (N-12)/2 

Text (String) N ≥ 13 and odd (N-13)/2 
 

3.3 SQLite Cell Structure 
 

 
Fig. 2. SQLite cell structure 

 
As described in Section 3.1, an SQLite record is stored in a cell. A cell consists of cell length, 
a cell identifier, a payload header, and the payload, as shown in Fig. 2. An SQLite record is 
composed of one or more fields. Consider the SQLite database table “telephone book.” This 
table consists of three fields: (i) “abbreviated number” of integer type, (ii) “name” of text type, 
and (iii) “phone number” of text type. The type of each field, e.g., integer and text, is specified 
in the serial type code, as shown in Fig. 2.  
The basic idea underlying SPaRe is that an SQLite record is written to the database file 
according to the serial type code. This serial type code is generated according to a pre-defined 
rule, as summarized in Table 2. Specifically, the length of the serial type code of the telephone 
book is 3 bytes because the table consists of three fields. Note that there is no unique serial 
type code for a table. There are numerous serial type codes for the telephone book, including 
0x010C0D, 0x060D0D, and 0x010D0D. We refer to them as schema patterns of a record for 
the telephone book. Interpreting a schema pattern reveals information regarding the start/end 
point of each field of record.  
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Table 2. Form of representation of each data type 
Storage 

class 
Representation form Length of 

representation form Hexa Decimal 
Null 0x00 0 1 

Signed 
Integer 0x01 ~ 0x06 1~6 1 

Real 0x08 8 1 
Text(Blob) N ≥ 0x0C and even N ≥ 12 and even 1 ~ 9 

Text(String) N ≥ 0x0D and odd N ≥ 13 and odd 1 ~ 9 

4. Deletion and Insertion Operations in SQLite 

4.1 Deletion of Record 
The deletion of an SQLite record can be implemented as below. 
 

 In the first method, the record is first replaced with zeros. Deletion of this type 
can be found in current SQLite implementation incorporated in Web browsers, 
such as Firefox, Safari, and Chrome. If a record is deleted in this manner, no 
prevalent method can recover the record because no record physically remains in 
the database file.  

 The second method involves physically removing a record, e.g., its raw format. 
This is typically used for the removal of a particular record in iOS.  

 The final method involves freeing the allocated memory and leaving a record in 
the SQLite database file. Skype, the well-known online chat application, adopts 
this method. Further, the group removal of text messages or phone call records in 
iOS is implemented in this manner.   

 
The current deletion implementation for SQLite is summarized in Table 3.  
 

Table 3. Implementation of deletion in SQLite applications  
Implementation Method Example Applications 
Replacement with zero (0) Firefox, Safari, Chrome 

Physical removal iPhone OS (iOS) – Typically used for the 
removal of an individual record 

De-allocation of memory area  
(Free memory) 

SkyPe, iPhone OS (iOS) – Group removal of 
text messages and phone call records 

 
Note that a record that is not physically erased from the database file can be recovered. Here, 
we detail how a record is deleted after this fashion. Suppose N records are stored in a database 
as shown in Fig. 3. If one or more records are removed (Cases I and II in Fig. 3), the 
corresponding cells are re-assigned as free blocks (see the shaded block in Fig. 3). Further, this 
block remains unchanged until a new record is inserted into it. However, if all data is deleted, 
the entire page except the page header is re-assigned as unallocated space (Case III in Fig. 3). 
The authors of [11] have shown that a record can be recovered in Case III. In this paper, we 
show that a record that is deleted in the manner of Cases I and II can be recovered as well. 
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Fig. 3. Deletion of records in SQLite 
 

4.2 Insertion of Record 
We now describe the insertion of an SQLite record. This answers the question: “how can a 
recoverable record exist for a deleted item?” 
 
When a new record item is inserted into the database, SQLite first checks if there is any free 
block that can store the record, i.e., if there exists a free block of size greater than or equal to 
the new item. If so, the record (partially) replaces the corresponding free block (Case I in Fig. 
4). The remainder of the free block is reduced (see F’). Part of the record originally contained 
in F is now irrecoverable, but there may be a record in F’. Obviously, SQLite can neither locate 
each removed record, nor figure out how many records have not been replaced in F’. On the 
contrary, if a free block is unavailable, the new record is inserted into unallocated space (Case 
II in Fig. 4). Note that the data structure of a database file, i.e., each cell pointed to by the 
corresponding cell pointer, is not broken in any case. 
 
 

 

Fig. 4. Insertion of records in SQLite 
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5. SPaRe: Schema Pattern based Recovery  

 
Fig. 5. SPaRe schema pattern parsing 

 
In this section, we describe SPaRe in detail. Consider an SQLite database table “message.” 
This table consists of four fields: (i) date, of integer type, (ii) address, of text type, (iii) msg, of 
text type, and (iv) data, of text type.  
To describe a schema pattern, we use an acronym for each data type: N, I, R, and T are 
abbreviations for null, integer, real, and text types, respectively. For example, the schema 
pattern for “message” table is ITTT.  
A given record is written in reverse order as described in Section 4. Therefore, SPaRe 
inversely travels a database file in an exhaustive manner and identifies every schema pattern 
matched. In order to be matched with a schema pattern, every serial type code should be found 
in reverse order in the given file. Fig. 5 shows an example of matching for schema pattern 
ITTT. Note that comparing against serial type T will not occur until the matching against 
integer serial type I is successful. We refer to this matching process as “schema pattern 
parsing.” 
However, schema pattern parsing is not simple because a schema pattern has no unique 
representation form, as described in Section 3.3. Further, a hexa-string can have multiple 
meanings. Suppose 0x02 is found on a page; 0x02 may or may not imply integer type code I, 
and can be numerical value “2” found in any text. This ambiguity while interpreting a 
hexa-code increases the complexity of an algorithm. Fortunately, a database record typically 
has a primary key. The primary key is typically integer type, and is the first field of a database 
table.  
If a schema pattern is found, SPaRe can infer where the corresponding record is stored (see 
Section 3.3). SPaRe does not know whether the record has been deleted, and returns every 
record matched. Thus, some of the recovered records may be (partially) broken.  
Algorithm 1 describes the pseudo-code of SPaRe’s parsing algorithm. 
 

Algorithm 1. Schema pattern parsing algorithm  
Function Identification of record 
 
Input  

page page             
schema pattern C0C1…CN-1  /* length of schema pattern is N */ 

 
Output 

set of records R 
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Begin 
/* exhaustive search in reverse order */ 
R    φ 
L    length[page]            /* length of page is L */ 
For page[position], position  L-N to 0 do 

parsed  true; 
        iter  0; 

While iter ≤ N-1 do 
If Serial_Type_Code(page[position+iter]) != Citer then 

parsed  false; 
break; 

 End If 
           iter  iter + 1;  

End While 
        If parsed == true 
           R  R U Record pointed via page[position] 
End 
 
Return R; 

 

6. Evaluation: A Case Study 

5.1 Experimental Setup 
 

 
Fig. 6. The database table schema for phone call records 

 
We implemented SPaRe on iPhone 6 running iOS 7. iPhone 6 employs SQLite ver. 3.7. Many 
operational data types, including phone call records, usage history, text messages, and phone 
numbers, are written to the iPhone 6 SQLite database file.  
To perform the experiment, we set several SQLite database tables: “phone call record,” “text 
messages,” “phone number record,” “usage history,” and “application data.” Fig. 6 shows a 
snapshot of the “phone call record” table. The schema pattern of this table was IT II II TT. 
Moreover, the first field of the table was ROWID, of integer type, and was the primary key. 
For each table, we chose some records (not all records) and deleted them. We then performed 
recovery using the methods proposed in [10][11] as well as SPaRe.  
We repeatedly performed 10-fold experiments and computed the average recovery rate.   
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5.2 Experimental Result 

 
Fig. 7. The experimental results: average recovery rates for each scheme  

 
Fig. 7 shows the results. We observed that SPaRe successfully recovered at least 98% of the 
removed data, whereas the other schemes [10][11] recovered at most 86% of the deleted 
records. Particularly for the “text message,” “phone number,” and “usage history” tables, all 
records removed were recovered by SPaRe. Further investigation of the compared schemes 
revealed that every record that had not been recovered had been re-located in the free block. 
This shows that SPaRe can recover a record located in the free block whereas state-of-the-art 
schemes cannot. 
We also observed that, SPaRe was unable to recover some records in the “phone call record” 
and “application data” tables. Fig. 8 shows a screenshot of the recovered records in the “phone 
call record” table, where we see that some records were incorrectly recovered.  
For example, there is a partially recovered record (see index 79). SPaRe failed to recover the 
address and the flag fields in this case. This is the representative case of partial recovery. We 
manually analyzed the database file, and found that the record of index 79 was in part replaced 
by another record, resulting in skewed data.  
Further, SPaRe might have misinterpreted a text string as a schema pattern. We did not 
observe this case in our experiment. This happens rarely and, thus, does not significantly affect 
the accuracy of recovery.  
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Fig. 8. The experimental results for phone call record—data were anonymized for privacy  

6. Discussions 
We summarize the advantages of SPaRe from the perspective of digital forensics. Unlike 
previous approaches, SPaRe can recover a record in the free block. A record located in the free 
block is often generated via the deletion of an individual record. Since none of the cell pointers 
indicates the position of this record, it is unreachable and, thus, cannot be recovered using a 
method that leverages an SQLite database structure. Only exploring every scratch of a 
database file can solve this issue.  
Another advantage of SPaRe is that it can recover a partially broken record because SPaRe 
directly recovers a record from a database file. If a schema pattern is not broken, SPaRe can 
recover the corresponding record in any case, irrespective of its integrity. SPaRe can even 
recover a record if the file system is physically damaged.  
However, SPaRe requires exhaustively searching a database file. To implement this, several 
heuristics can be applied. A possible one involves parsing each serial type in speculative order. 
Consider a schema pattern TITT. As shown in Table 3, parsing serial type I requires fewer 
comparisons than serial type T. Thus, SPaRe first parses serial type I in advance, and then 
parses the other serial type codes. We observed that this simple heuristic can significantly 
improve the performance of SPaRe.  
Above all, we believe that computational complexity is not a critical factor in digital forensics, 
where acquiring critical evidence is most crucial.  
We summarize the differences between SPaRe and certain previous approaches in Table 4.  

7. Conclusion 
In this paper, we proposed SPaRe, an SQLite recovery scheme that leverages a schema pattern 
of a database table. We implemented SPaRe on iPhone 6 running iOS 7 and tested it. The 
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results revealed that SPaRe recovered data from the entire spectrum of recoverability, 
including (i) data belonging to all unallocated areas (i.e., unallocated space plus free blocks), 
(ii) partially replaced data, and even (iii) data written on physically damaged storage.  
 

Table 4. Comparison with the state-of-the-art schemes [11] 
SQLite Area [10] [11] SPaRe 

Unallocated space recoverable recoverable recoverable 

Free block 

Individually 
deleted record 

Partially 
recoverable 

Partially 
recoverable recoverable 

Consecutive 
records irrecoverable irrecoverable recoverable 

Replaced or physically 
removed irrecoverable 
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