
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, Mar. 2017 1557
Copyright ⓒ2017 KSII

SPaRe: Efficient SQLite Recovery Using
Database Schema Patterns

Suchul Lee1, Sungil Lee2, and Jun-Rak Lee3

1Korea National University of Transportation
157 Railroadmuseum-ro, Uiwang-si, Gyeonggi-do 16106, Korea (Uiwang Campus)

[e-mail: sclee@ut.ac.kr]
2National Security Research Institute

Yuseongdaero 1559, Yuseong, Daejon, Korea
[e-mail: silee@nsr.re.kr]

3Kangwon National University
Joongang-Ro, Samcheok, Kangwon, Korea

[e-mail: jrlee@kangwon.ac.kr]
*Corresponding author: Jun-Rak Lee

Received May 28, 2015; revised May 16, 2016; accepted January 16, 2017;

 published March 31, 2017

Abstract

In recent times, the Internet of Things (IoT) has rapidly emerged as one of the most influential
information and communication technologies (ICT). The various constituents of the IoT
together offer novel technological opportunities by facilitating the so-called “hyper-connected
world.” The fundamental tasks that need to be performed to provide such a function involve
the transceiving, storing, and analyzing of digital data. However, it is challenging to handle
voluminous data with IoT devices because such devices generally lack sufficient
computational capability. In this study, we examine the IoT from the perspective of security
and digital forensics. SQLite is a light-weight database management system (DBMS) used in
many IoT applications that stores private information. This information can be used in digital
forensics as evidence. However, it is difficult to obtain critical evidence from IoT devices
because the digital data stored in these devices is frequently deleted or updated. To address this
issue, we propose Schema Pattern-based Recovery (SPaRe), an SQLite recovery scheme that
leverages the pattern of a database schema. In particular, SPaRe exhaustively explores an
SQLite database file and identifies all schematic patterns of a database record. We
implemented SPaRe on an iPhone 6 running iOS 7 in order to test its performance. The results
confirmed that SPaRe recovers an SQLite record at a high recovery rate.

Keywords: SQLite, Recovery, Database Schema, Internet of Things, Digital forensics.

https://doi.org/10.3837/tiis.2017.03.017 ISSN : 1976-7277

1558 Lee et al.: SPaRe: Efficient SQLite Recovery Using Database Schema Patterns

1. Introduction

The Internet of Things (IoT) has emerged in recent times as one of the most dominant
information and communication technologies (ICT) [1]. The IoT has consistently been
highlighted as one of the top 10 strategic technologies in the Gatner, Inc. reports since 2012.
Indeed, we are at the threshold of the so-called “hyper-connected world,” where many objects
that surround us will be on computer networks in one form or another. This phenomena is now
called the Internet of Everything (IoE)—a network of networks where billions of connections
create unprecedented opportunities as well as new risks [2]—as it embraces capabilities such
as context awareness, greater processing power, and energy independence, as well as more
people, places, and new types of information.
The primary constituents of the IoT, such as smartphones, tablets, wearable devices, smart
TVs, and automobiles, communicate with one another. The components of the IoT together
provide comprehensive human welfare services through closely connected networks with no
mutual interference, where this activity goes largely unrecognized by most people. The
fundamental tasks that need to be executed in order to provide such a function involve the
transceiving, storing, and analyzing of digital data.
It is challenging to handle the voluminous data involved in IoT by using IoT devices because
such devices generally lack sufficient computational capability. Since IoT devices are
designed to be portable and energy efficient, they typically use slow CPUs and limited
memories, and are sometimes even not equipped with power supplies [3]. Since a large
amount of efficient storage is difficult to install on IoT devices, SQLite is often used as
primary storage. SQLite [4] is a prominent light-weight database management system (DBMS)
used in many IoT applications, such as Android [5], iOS [6], and Skype [7]. Furthermore, such
commonly used Web browsers as Firefox, Chrome, and Safari use SQLite. SQLite is a
self-contained, serverless, and transactional database engine that many light-weight
applications incorporate as their primary storage.
Digital forensics [8] is a branch of forensic science encompassing the recovery and
investigation of material found in computer devices. Recent advances in Internet technology
have caused the definition of digital forensics to be expanded to encompass an investigation
into all devices capable of storing digital data, such as smartphones, surveillance cameras,
digital recorders, sensors, network switches, and black boxes. Legally critical evidence, such
as the video of a crime, the footprint of a suspect, or a penetrating (hacking) route, can be
found through such digital data.
However, it is difficult to obtain critical evidence from IoT devices because digital data stored
in such devices is frequently deleted or updated. For example, smartphones save private
information, such as recent phone call records, emails, text messages, and access history in
their primary nonvolatile storage, i.e., the DBMS. Such data can be accidentally deleted by
smartphone users. Moreover, criminals (or suspects) may try to hide their identity or digital
footprint by erasing records that implicate them in an illegal activity. Fortunately, there are
several techniques to recover deleted DBMS data.
Several approaches to recover deleted SQLite data have been proposed [9-13]. The pioneering
research in SQLite recovery was conducted by Pereira et al. [9], who introduced a recovery
scheme for the Firefox Web browser. The scheme leveraged a journal file that is utilized in
data transfer in SQLite. Lee et al. proposed a method to recover deleted data in the overflow

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1559

zone [10]. This method enabled the recovery of deleted data located in an unallocated area of
an SQLite database file.
However, prevalent approaches to SQLite data recovery cannot recover an individually
deleted record. Since they rely on the structure of an SQLite database file, deleted records can
be recovered only in batches. Recovering a separately deleted record is particularly important
for digital forensics because criminals (or suspects) might typically steal a specific item of
record instead of the entire data to avoid arousing unnecessary suspicion among
law-enforcement agencies. However, it is difficult to recover an individually deleted record
for the following reasons: (i) The record often cannot be accessed via a logical SQLite pointer.
We refer to such data as unreachable. (ii) Even the part of an SQLite database file where a
deleted record was previously located can be physically replaced. We refer to such deletions as
irreversible.
In this paper, we propose Schema Pattern-based Recovery (SPaRe), an SQLite recovery tool
that leverages a database schema pattern. In particular, SPaRe exhaustively explores an
SQLite database file and identifies each schema pattern of a database record. The identified
schema patterns are then utilized to locate records that are unreachable and partially
irreversible. SPaRe parses each scratch of a database file to determine if it contains a record by
comparing it with the SQLite database schema pattern identified beforehand. We implemented
SPaRe on an iPhone 6 running iOS 7 and tested it through extensive experiments. The results
revealed that SPaRe can accurately recover every record found in a database file.
The remainder of this paper is organized as follows: Section 2 contains a review of related
work in the area, whereas Section 3 and 4 contain details of the data structure of SQLite, where
a key principle needed to understand our recovery scheme is introduced. Section 5 is devoted
to a description of the design and implementation of SPaRe, and Section 6 contains an
assessment of our scheme. Finally, we offer our conclusions in Section 7.

2. Related Work
Related work regarding SQLite recovery broadly falls in the following three areas.

2.1 Data Recovery using .Journal File
SQLite creates a .journal file as an intermediate product while processing transactional
database queries. This file temporarily stores data for intermediate database processing before
an actual record is written to the SQLite database file. Pereira et al. [9] proposed a method that
exploits this file to recover a deleted record. To the best of our knowledge, this pioneering
work was the first attempt in SQLite recovery. The work in this study inspired several
approaches that utilize a transactional SQLite recovery technique. Unlike [9], our approach
relies on the recognition and matching of a database schema pattern.

2.2 Recovery by leveraging SQLite Database File Structure
Jeon et al. [11] thoroughly analyzed an SQLite database file structure and noted that deleted
records are re-located into unallocated space. Although the method proposed in [11] quickly
explores the entire unallocated space through a pointer in the SQLite page header, it cannot
identify a deleted record located in the free block. A deleted record in the free block is
typically generated by the separate deletion of a record. The recovery of a record of this type is

1560 Lee et al.: SPaRe: Efficient SQLite Recovery Using Database Schema Patterns

particularly important because the deletion of all data seldom occurs in practice. However, our
approach can facilitate access to the free block, and exhaustively explores every database file
scratch to find all recoverable records. One may object that an exhaustive search of all the
memory is expensive. However, we believe that accuracy and completeness are more
significant than computational complexity, especially for information security and digital
forensics.

2.3 SQLite Logging File
SQLite writes each transactional operation to a separate logging file. The goal of this logging
function is to guarantee integrity during each transaction. Delta-WAL [13] leverages the
logging file to perform SQLite recovery. In SQLite, if one or more records are updated, all
data, i.e., all records, is re-written. This wasteful update mechanism is improved upon in [13].
Only updated record(s) are written to the logging file, and thus the size of the file is reduced in
Delta-WAL [13]. However, Delta-WAL focuses on preserving the integrity of a database
transaction and, hence, is orthogonal in purpose to our work here. Our proposed scheme can be
extended to utilize a logging file. This will provide an additional opportunity to recover an
irrecoverable record. The consideration of this extension is postponed until future work.

3. Analysis of SQLite Database File Format

3.1 SQLite Database File Structure

Fig. 1. SQLite Database File Structure

Fig. 1 shows the structure of an SQLite database file, which is divided into several areas of
equal size, each of which is called a page. The first page is reserved as an SQLite database file
header. Except for the first page, each page consists of a page header, a cell pointer array,
unallocated space, and cell content area, as shown in Fig. 1. A page is implemented with a
B-tree data structure. A database record is physically stored in a B-tree node, called a cell. A
cell is located in the cell content area, and SQLite accesses it via a cell pointer located in the
cell pointer array. Note that a cell is placed in reverse order (see the index in the cell content
area). Therefore, the unused area in a page, i.e., the unallocated space, can be located in the
middle. The size of the unallocated space is variable.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1561

3.2 SQLite Data Type
The current implementation of SQLite supports the following data type: null, signed integer,
real (IEEE 754-2008 64-bit floating-point number), and text (string and blob). Each data type
is designed to consume a minimal amount of memory because SQLite is often utilized in
light-weight applications. Table 1 summarizes SQLite’s data types.

Table 1. SQLite data type
Storage class Serial types Content Size (Bytes)

Null 0 0
Signed Integer 1~6 1~4, 6, 8

Real 7 8
Text (Blob) N ≥ 12 and even (N-12)/2

Text (String) N ≥ 13 and odd (N-13)/2

3.3 SQLite Cell Structure

Fig. 2. SQLite cell structure

As described in Section 3.1, an SQLite record is stored in a cell. A cell consists of cell length,
a cell identifier, a payload header, and the payload, as shown in Fig. 2. An SQLite record is
composed of one or more fields. Consider the SQLite database table “telephone book.” This
table consists of three fields: (i) “abbreviated number” of integer type, (ii) “name” of text type,
and (iii) “phone number” of text type. The type of each field, e.g., integer and text, is specified
in the serial type code, as shown in Fig. 2.
The basic idea underlying SPaRe is that an SQLite record is written to the database file
according to the serial type code. This serial type code is generated according to a pre-defined
rule, as summarized in Table 2. Specifically, the length of the serial type code of the telephone
book is 3 bytes because the table consists of three fields. Note that there is no unique serial
type code for a table. There are numerous serial type codes for the telephone book, including
0x010C0D, 0x060D0D, and 0x010D0D. We refer to them as schema patterns of a record for
the telephone book. Interpreting a schema pattern reveals information regarding the start/end
point of each field of record.

1562 Lee et al.: SPaRe: Efficient SQLite Recovery Using Database Schema Patterns

Table 2. Form of representation of each data type
Storage

class
Representation form Length of

representation form Hexa Decimal
Null 0x00 0 1

Signed
Integer 0x01 ~ 0x06 1~6 1

Real 0x08 8 1
Text(Blob) N ≥ 0x0C and even N ≥ 12 and even 1 ~ 9

Text(String) N ≥ 0x0D and odd N ≥ 13 and odd 1 ~ 9

4. Deletion and Insertion Operations in SQLite

4.1 Deletion of Record
The deletion of an SQLite record can be implemented as below.

 In the first method, the record is first replaced with zeros. Deletion of this type
can be found in current SQLite implementation incorporated in Web browsers,
such as Firefox, Safari, and Chrome. If a record is deleted in this manner, no
prevalent method can recover the record because no record physically remains in
the database file.

 The second method involves physically removing a record, e.g., its raw format.
This is typically used for the removal of a particular record in iOS.

 The final method involves freeing the allocated memory and leaving a record in
the SQLite database file. Skype, the well-known online chat application, adopts
this method. Further, the group removal of text messages or phone call records in
iOS is implemented in this manner.

The current deletion implementation for SQLite is summarized in Table 3.

Table 3. Implementation of deletion in SQLite applications
Implementation Method Example Applications
Replacement with zero (0) Firefox, Safari, Chrome

Physical removal iPhone OS (iOS) – Typically used for the
removal of an individual record

De-allocation of memory area
(Free memory)

SkyPe, iPhone OS (iOS) – Group removal of
text messages and phone call records

Note that a record that is not physically erased from the database file can be recovered. Here,
we detail how a record is deleted after this fashion. Suppose N records are stored in a database
as shown in Fig. 3. If one or more records are removed (Cases I and II in Fig. 3), the
corresponding cells are re-assigned as free blocks (see the shaded block in Fig. 3). Further, this
block remains unchanged until a new record is inserted into it. However, if all data is deleted,
the entire page except the page header is re-assigned as unallocated space (Case III in Fig. 3).
The authors of [11] have shown that a record can be recovered in Case III. In this paper, we
show that a record that is deleted in the manner of Cases I and II can be recovered as well.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1563

Fig. 3. Deletion of records in SQLite

4.2 Insertion of Record
We now describe the insertion of an SQLite record. This answers the question: “how can a
recoverable record exist for a deleted item?”

When a new record item is inserted into the database, SQLite first checks if there is any free
block that can store the record, i.e., if there exists a free block of size greater than or equal to
the new item. If so, the record (partially) replaces the corresponding free block (Case I in Fig.
4). The remainder of the free block is reduced (see F’). Part of the record originally contained
in F is now irrecoverable, but there may be a record in F’. Obviously, SQLite can neither locate
each removed record, nor figure out how many records have not been replaced in F’. On the
contrary, if a free block is unavailable, the new record is inserted into unallocated space (Case
II in Fig. 4). Note that the data structure of a database file, i.e., each cell pointed to by the
corresponding cell pointer, is not broken in any case.

Fig. 4. Insertion of records in SQLite

1564 Lee et al.: SPaRe: Efficient SQLite Recovery Using Database Schema Patterns

5. SPaRe: Schema Pattern based Recovery

Fig. 5. SPaRe schema pattern parsing

In this section, we describe SPaRe in detail. Consider an SQLite database table “message.”
This table consists of four fields: (i) date, of integer type, (ii) address, of text type, (iii) msg, of
text type, and (iv) data, of text type.
To describe a schema pattern, we use an acronym for each data type: N, I, R, and T are
abbreviations for null, integer, real, and text types, respectively. For example, the schema
pattern for “message” table is ITTT.
A given record is written in reverse order as described in Section 4. Therefore, SPaRe
inversely travels a database file in an exhaustive manner and identifies every schema pattern
matched. In order to be matched with a schema pattern, every serial type code should be found
in reverse order in the given file. Fig. 5 shows an example of matching for schema pattern
ITTT. Note that comparing against serial type T will not occur until the matching against
integer serial type I is successful. We refer to this matching process as “schema pattern
parsing.”
However, schema pattern parsing is not simple because a schema pattern has no unique
representation form, as described in Section 3.3. Further, a hexa-string can have multiple
meanings. Suppose 0x02 is found on a page; 0x02 may or may not imply integer type code I,
and can be numerical value “2” found in any text. This ambiguity while interpreting a
hexa-code increases the complexity of an algorithm. Fortunately, a database record typically
has a primary key. The primary key is typically integer type, and is the first field of a database
table.
If a schema pattern is found, SPaRe can infer where the corresponding record is stored (see
Section 3.3). SPaRe does not know whether the record has been deleted, and returns every
record matched. Thus, some of the recovered records may be (partially) broken.
Algorithm 1 describes the pseudo-code of SPaRe’s parsing algorithm.

Algorithm 1. Schema pattern parsing algorithm
Function Identification of record

Input

page page
schema pattern C0C1…CN-1 /* length of schema pattern is N */

Output

set of records R

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1565

Begin
/* exhaustive search in reverse order */
R φ
L length[page] /* length of page is L */
For page[position], position L-N to 0 do

parsed true;
 iter 0;

While iter ≤ N-1 do
If Serial_Type_Code(page[position+iter]) != Citer then

parsed false;
break;

 End If
 iter iter + 1;

End While
 If parsed == true
 R R U Record pointed via page[position]
End

Return R;

6. Evaluation: A Case Study

5.1 Experimental Setup

Fig. 6. The database table schema for phone call records

We implemented SPaRe on iPhone 6 running iOS 7. iPhone 6 employs SQLite ver. 3.7. Many
operational data types, including phone call records, usage history, text messages, and phone
numbers, are written to the iPhone 6 SQLite database file.
To perform the experiment, we set several SQLite database tables: “phone call record,” “text
messages,” “phone number record,” “usage history,” and “application data.” Fig. 6 shows a
snapshot of the “phone call record” table. The schema pattern of this table was IT II II TT.
Moreover, the first field of the table was ROWID, of integer type, and was the primary key.
For each table, we chose some records (not all records) and deleted them. We then performed
recovery using the methods proposed in [10][11] as well as SPaRe.
We repeatedly performed 10-fold experiments and computed the average recovery rate.

1566 Lee et al.: SPaRe: Efficient SQLite Recovery Using Database Schema Patterns

5.2 Experimental Result

Fig. 7. The experimental results: average recovery rates for each scheme

Fig. 7 shows the results. We observed that SPaRe successfully recovered at least 98% of the
removed data, whereas the other schemes [10][11] recovered at most 86% of the deleted
records. Particularly for the “text message,” “phone number,” and “usage history” tables, all
records removed were recovered by SPaRe. Further investigation of the compared schemes
revealed that every record that had not been recovered had been re-located in the free block.
This shows that SPaRe can recover a record located in the free block whereas state-of-the-art
schemes cannot.
We also observed that, SPaRe was unable to recover some records in the “phone call record”
and “application data” tables. Fig. 8 shows a screenshot of the recovered records in the “phone
call record” table, where we see that some records were incorrectly recovered.
For example, there is a partially recovered record (see index 79). SPaRe failed to recover the
address and the flag fields in this case. This is the representative case of partial recovery. We
manually analyzed the database file, and found that the record of index 79 was in part replaced
by another record, resulting in skewed data.
Further, SPaRe might have misinterpreted a text string as a schema pattern. We did not
observe this case in our experiment. This happens rarely and, thus, does not significantly affect
the accuracy of recovery.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1567

Fig. 8. The experimental results for phone call record—data were anonymized for privacy

6. Discussions
We summarize the advantages of SPaRe from the perspective of digital forensics. Unlike
previous approaches, SPaRe can recover a record in the free block. A record located in the free
block is often generated via the deletion of an individual record. Since none of the cell pointers
indicates the position of this record, it is unreachable and, thus, cannot be recovered using a
method that leverages an SQLite database structure. Only exploring every scratch of a
database file can solve this issue.
Another advantage of SPaRe is that it can recover a partially broken record because SPaRe
directly recovers a record from a database file. If a schema pattern is not broken, SPaRe can
recover the corresponding record in any case, irrespective of its integrity. SPaRe can even
recover a record if the file system is physically damaged.
However, SPaRe requires exhaustively searching a database file. To implement this, several
heuristics can be applied. A possible one involves parsing each serial type in speculative order.
Consider a schema pattern TITT. As shown in Table 3, parsing serial type I requires fewer
comparisons than serial type T. Thus, SPaRe first parses serial type I in advance, and then
parses the other serial type codes. We observed that this simple heuristic can significantly
improve the performance of SPaRe.
Above all, we believe that computational complexity is not a critical factor in digital forensics,
where acquiring critical evidence is most crucial.
We summarize the differences between SPaRe and certain previous approaches in Table 4.

7. Conclusion
In this paper, we proposed SPaRe, an SQLite recovery scheme that leverages a schema pattern
of a database table. We implemented SPaRe on iPhone 6 running iOS 7 and tested it. The

1568 Lee et al.: SPaRe: Efficient SQLite Recovery Using Database Schema Patterns

results revealed that SPaRe recovered data from the entire spectrum of recoverability,
including (i) data belonging to all unallocated areas (i.e., unallocated space plus free blocks),
(ii) partially replaced data, and even (iii) data written on physically damaged storage.

Table 4. Comparison with the state-of-the-art schemes [11]
SQLite Area [10] [11] SPaRe

Unallocated space recoverable recoverable recoverable

Free block

Individually
deleted record

Partially
recoverable

Partially
recoverable recoverable

Consecutive
records irrecoverable irrecoverable recoverable

Replaced or physically
removed irrecoverable

8. Acknowledgement
This was supported by Korea National University of Transportation in 2017. The study is
supported by 2015 Research Grant from Kangwon National University (No.201510096).

References
[1] Microsoft, “Make IoT real with the Internet of Your Things,” Article(CrossRef Link)
[2] Kortuem, Gerd, et al. "Smart objects as building blocks for the internet of things." Internet

Computing, IEEE 14.1 (2010): 44-51, December 2009. Article(CrossRef Link)
[3] Sundmaeker, Harald, et al., Vision and challenges for realising the Internet of Things, 2010.

Article(CrossRef Link)
[4] A. Grant and O. Mike. The Definitive Guide to SQLite. Apress LP, 2010. Article(CrossRef Link)
[5] Enck, William, et al. "A Study of Android Application Security," USENIX security symposium,

Vol. 2. 2011.
[6] Apple iPhone, Article(CrossRef Link)
[7] Baset, Salman A., and Henning Schulzrinne. "An analysis of the skype peer-to-peer internet

telephony protocol," in Proc. of IEEE INFOCOM 2006. Article(CrossRef Link)
[8] Casey, Eoghan. Digital evidence and computer crime: forensic science, computers and the internet.

Academic press, 2011. Article(CrossRef Link)
[9] M. T. Pereira, "Forensic Analysis of the Firefox 3 Internet History and Recovery of Deleted

SQLite Records," Digital Investigation, Vol. 5. No. 3, pp.93-103, 2009. Article(CrossRef Link)
[10] K. Lee, S. Yang, W. Hwang, K. Kim, T, Jang, and G. Son, A Recovery Scheme for the Deleted

Overflow Data in SQLite Database", Journal of KIIT, Vol. 10, No. 11, pp.143-153, 2011.
[11] S. Jeon, J. Bang, K. Byun, and S. Lee, "A Recovery Method of Deleted Record for SQLite

Database," Personal and Ubiquitous Computing, Vol. 16, No. 6, pp.707-715, 2012.
Article(CrossRef Link)

[12] S. Lee and H. Yum, "A Recovery Method of Deleted Record Using The Schema Pattern Analysis
for SQLite Database," The workshop for digital forensic technique, 2011. 8.

[13] J. Lee, M. Shin, Y. Jang, and S. Park. "A Novel Recovery Scheme for SQLite Based on Logical
Logging," Journal of KIIT, Vol. 12, No. 11, pp. 181-192, Nov. 30, 2014. Article(CrossRef Link)

http://www.microsoft.com/en-us/server-cloud/internet-of-things.aspx
https://doi.org/10.1109/MIC.2009.143
https://doi.org/10.2759/26127
https://doi.org/10.1007/978-1-4302-3226-1
https://www.apple.com/en/iphone/
https://doi.org/10.1109/INFOCOM.2006.312
https://doi.org/10.1177/0734016807304840
https://doi.org/10.1016/j.diin.2009.01.003
https://doi.org/10.1007/s00779-011-0428-7
https://doi.org/10.14801/kitr.2014.12.11.181

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 3, March 2017 1569

Suchul Lee received the BS and Ph. D degrees in computer science from Seoul National
University, Seoul, South Korea in 2008 and 2014, respectively. He is currently an
assistant professor in the Department of Computer Science and Information Engineering
at Korea National University of Transportation, Uiwang, Korea. From 2014 to 2016, he
was a member of research staff in National Security Research Institute, Daejon, Korea.
His research interests include computer and information security, wireless and mobile
systems, Internet applications, such as 802.11, cognitive radio, and traffic analysis with
an emphasis on system performance optimization.

Sungil Lee received the MS degree in information security from Soonchunhyang
University, Asan, Chungnam, South Korea in 2005. He is currently a senior member of
research staff in National Security Research Institute, Daejon, Korea. His research
interests include computer security and forensics.

Jun-Rak Lee received the B.S. M.S. and Ph.D. degrees in mathematics from In-ha
University in 1984, 1986, and 1991, respectively. Since 1995, he has been with Kangwon
National University as a professor in the College of Humanities and Social Sciences. His
research interests include mathematical analysis, performance optimization, linear
algebra, information security, and computer networks.

