DOI QR코드

DOI QR Code

Prognostics and Health Management for Battery Remaining Useful Life Prediction Based on Electrochemistry Model: A Tutorial

배터리 잔존 유효 수명 예측을 위한 전기화학 모델 기반 고장 예지 및 건전성 관리 기술

  • Choi, Yohwan (Sogang University Department of Electronic Engineering) ;
  • Kim, Hongseok (Sogang University Department of Electronic Engineering)
  • Received : 2017.02.16
  • Accepted : 2017.04.10
  • Published : 2017.04.30

Abstract

Prognostics and health management(PHM) is actively utilized by industry as an essential technology focusing on accurately monitoring the health state of a system and predicting the remaining useful life(RUL). An effective PHM is expected to reduce maintenance costs as well as improve safety of system by preventing failure in advance. With these advantages, PHM can be applied to the battery system which is a core element to provide electricity for devices with mobility, since battery faults could lead to operational downtime, performance degradation, and even catastrophic loss of human life by unexpected explosion due to non-linear characteristics of battery. In this paper we mainly review a recent progress on various models for predicting RUL of battery with high accuracy satisfying the given confidence interval level. Moreover, performance evaluation metrics for battery prognostics are presented in detail to show the strength of these metrics compared to the traditional ones used in the existing forecasting applications.

고장 예지 및 건전성 관리 기술(Prognostics and Health Management; PHM)은 시스템의 현재 상태를 진단하고 향후 발생 가능한 고장 시점을 신뢰성 있게 예지하는 기술로써 유지 보수 비용의 절감 및 시스템의 안정성 향상을 꾀하고자 하는 다양한 산업분야에서 활발하게 이용되고 있다. 스마트 그리드의 에너지 저장장치, 전기차, 스마트폰, 항공우주산업 등 광범위한 사용처에서 중요한 에너지원으로 사용되고 있는 배터리 또한 성능 저하 및 폭발의 위험성으로부터 자유로울 수 없기 때문에 이러한 고장 예지 및 건전성 관리 기술이 반드시 적용되어야 할 어플리케이션이다. 본 논문에서는 PHM의 기본적인 개념을 소개함과 동시에 배터리의 잔존 유효 수명(Remaining Useful Life; RUL)을 예측하는 각종 알고리즘 및 성능 평가 지표 서술에 초점을 맞추도록 한다. 더불어 배터리의 기능적 동작 원리 및 전기화학 기반의 모델링에 대한 설명을 통해 향후 잠재적인 가능성을 지닌 배터리의 전반적인 특성에 대한 깊은 이해 및 응용 기술에 대한 통찰력을 제시하고자 한다.

Keywords

References

  1. K. Goebel, et al., "Prognostics in battery health management," IEEE Instrumentation & Measurement Mag., vol. 11, no. 4, Aug. 2008.
  2. B. Saha, et al., "Prognostics methods for battery health monitoring using a Bayesian framework," IEEE Trans. Instrumentation and Measurement, vol. 58, no. 2, pp. 291-296, 2009. https://doi.org/10.1109/TIM.2008.2005965
  3. ISO 13381-1, Condition monitoring and diagnostics of machines-prognostics. Part1: General guidelines, International Standard (2004), Retrieved Jan., 30, 2017, from https://www.iso.org/obp/ui#iso:std:iso:13381: -1:ed-1:v1:en
  4. J. Jun, et al., "Trend on IoT device product and technology," KICS Inf. and Commun. Mag., vol. 31, no. 4, pp. 44-52, Mar. 2014.
  5. K. Kim, S. Lee and J. Park "Technological trend analysis for configuration of energy storage system using retired electric vehicle battery," KICS Inf. and Commun. Mag., vol. 33, no. 7, pp. 47-52, Jun. 2016.
  6. Y, Ryu and J. Park, "Open energy storage system based on a profile," KICS Inf. and Commun. Mag., vol. 33, no. 7, pp. 40-46, Jun. 2016.
  7. Y. Choi and H. Kim, "Electrochemistry modeling based control of battery management system: A tutorial," KIC News, vol. 18, no. 5, pp. 47-60, 2015.
  8. M. J. Daigle and S. K. Chetan, "Electrochemistry-based battery modeling for prognostics," 2013.
  9. J. Li, S. Zhou, and Y. Han, Advances in Battery Manufacturing, Services, and Management Systems, John Wiley & Sons, 2016.
  10. S. K. Rahimian, S. Rayman, and R. E. White, "Extension of physics-based single particle model for higher charge-discharge rates," J. Power Sources, vol. 224, pp. 180-194, Feb. 2013. https://doi.org/10.1016/j.jpowsour.2012.09.084
  11. S. Dey and B. Ayalew, "A diagnostic scheme for detection, isolation and estimation of electrochemical faults in lithium-ion cells," in Proc. ASME 2015 Dynamic Systems and Control Conf., Columbus, Ohio, Oct. 2015.
  12. J. Lee, et al., "Prognostics and health management design for rotary machinery systems-Reviews, methodology and applications," Mechanical Syst. and Sign. Process., vol. 42, no. 1, pp. 314-334, Jan. 2014. https://doi.org/10.1016/j.ymssp.2013.06.004
  13. J. Z. Sikorska, M. Hodkiewicz, and L. Ma, "Prognostic modelling options for remaining useful life estimation by industry," Mechanical Syst. and Sign. Process., vol. 25, no. 5, pp. 1803-1836, Jul. 2011. https://doi.org/10.1016/j.ymssp.2010.11.018
  14. A. T. Elsayed, C. R. Lashway, and O. A. Mohammed, "Advanced battery management and diagnostic system for smart grid infrastructure," IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 897-905, 2016. https://doi.org/10.1109/TSG.2015.2418677
  15. L. Liao and F. Kottig, "Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction," IEEE Trans. Reliability, vol. 63, no. 1, pp. 191-207, 2014. https://doi.org/10.1109/TR.2014.2299152
  16. N.-H. Kim, D. An, and J.-H. Choi, Prognostics and Health Management of Engineering Systems: An Introduction, Springer, 2016.
  17. H.-J. Zimmermann, "Fuzzy set theory," Wiley Interdisciplinary Rev.: Computational Statistics, vol. 2, no. 3, pp. 317-332, 2010. https://doi.org/10.1002/wics.82
  18. J. Zhang and J. Lee, "A review on prognostics and health monitoring of Li-ion battery," J. Power Sources, vol. 196, no. 15, pp. 6007-6014, 2011. https://doi.org/10.1016/j.jpowsour.2011.03.101
  19. A. Malhi, R. Yan, and R. X. Gao, "Prognosis of defect propagation based on recurrent neural networks," IEEE Trans. Instrumentation and Measurement, vol. 60, no. 3, pp. 703-711, 2011. https://doi.org/10.1109/TIM.2010.2078296
  20. B. Saha, K. Goebel, and J. Christophersen, "Comparison of prognostic algorithms for estimating remaining useful life of batteries," Trans. Inst. Measurement and Control, vol. 31, no. 3-4, pp. 293-308, 2009. https://doi.org/10.1177/0142331208092030
  21. J. R. Galvan, A. Saxena, and K. Goebel, "Uncertainty representation and interpretation in model-based prognostics algorithms based on kalman filter estimation," Annu. Conf. Prognostics and Health Management Soc. 2012, 2012.
  22. R. K. Singleton, E. G. Strangas, and S. Aviyente, "Extended kalman filtering for remaining-useful-life estimation of bearings," IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1781-1790, 2015. https://doi.org/10.1109/TIE.2014.2336616
  23. X. Zhang and P. Pisu, "An unscented kalman filter based approach for the health-monitoring and prognostics of a polymer electrolyte membrane fuel cell," Annu. Conf. Prognostics and Health Management Soc., 2012.
  24. S. H. Sim, et al., "Remaining useful life prediction of Li-Ion battery based on charge voltage characteristics," Trans. Korean Soc. Mech. Eng. B, vol. 37, no. 4, pp. 313-322, 2013. https://doi.org/10.3795/KSME-B.2013.37.4.313
  25. Y. Qian and R. Yan, "Remaining useful life prediction of rolling bearings using an enhanced particle filter," IEEE Trans. Instrumentation and Measurement, vol. 64, no. 10, pp. 2696-2707, 2015. https://doi.org/10.1109/TIM.2015.2427891
  26. M. Bressel, et al., "Remaining useful life prediction and uncertainty quantification of proton exchange membrane fuel cell under variable load," IEEE Trans. Ind. Electron., vol. 63, no. 4, pp. 2569-2577, 2016. https://doi.org/10.1109/TIE.2016.2519328
  27. J. K. Kimotho, T. Meyer, and W. Sextro, "PEM fuel cell prognostics using particle filter with model parameter adaptation," IEEE Conf. PHM, pp. 1-6, 2014.
  28. M. R. Palacin, and A. de Guibert, "Why do batteries fail?," Science, vol. 351, no. 6273, 1253292, Feb. 2016. https://doi.org/10.1126/science.1253292
  29. A. Saxena, et al., "Metrics for offline evaluation of prognostic performance," Int. J. Prognostics and Health Management, vol. 1, no. 1, pp. 4-23, 2010.
  30. A. Saxena, et al., "Metrics for evaluating performance of prognostic techniques," IEEE Conf. PHM, pp. 1-17, 2008.

Cited by

  1. 실시간 감시를 통한 교통신호제어기의 열화 감지 vol.18, pp.2, 2017, https://doi.org/10.33162/jar.2018.06.18.2.153
  2. Real-Time Prediction of Capacity Fade and Remaining Useful Life of Lithium-Ion Batteries Based on Charge/Discharge Characteristics vol.10, pp.7, 2017, https://doi.org/10.3390/electronics10070846