DOI QR코드

DOI QR Code

FM 신호 기반 PCL 시스템에서 간섭 신호 제거 알고리즘의 성능 분석

Performance Analysis of Interference Cancellation Algorithms for an FM Based PCL System

  • 투고 : 2016.10.14
  • 심사 : 2017.04.06
  • 발행 : 2017.04.30

초록

FM 신호 기반 PCL 시스템은 FM 송신탑에서 송신되는 신호를 이용하여 이동하는 표적의 위치를 추적하는 수동형 레이더 기술로서, 송신탑에서 수신기에 LOS (line-of-sight)로 입사되는 직접경로 신호와 표적으로부터 반사된 표적반사 신호의 상호 상관 함수를 유도하여 표적의 위치를 추적한다. 하지만, 직접경로 신호와 지형 및 지표면 등에서 반사되는 간섭 신호가 표적반사 신호 획득을 위한 감시 채널에 동시에 측정되며, 이에 따라 표적의 위치를 정확하게 탐지하지 못하는 문제가 발생한다. 간섭 신호 제거에는 적응 필터가 효과적인 것으로 알려져 있지만, 기존 연구에서는 상호 상관 함수나 적응 필터 입출력 신호의 전력 비율로부터 간섭 신호의 제거 성능을 유도하기 때문에, 정확한 성능 분석이 어려운 문제가 존재하였다. 본 논문에서는 필터 계수의 각 성분이 특정한 간섭 신호를 제거하기 위해 유도된다는 특징을 활용하여, 각 간섭 신호 제거 성능을 적응 필터 계수에 대한 함수로 정리한다. 제안한 성능 분석 방법을 기반으로 적응 필터 기법의 성능을 비교 및 분석하여, 제안한 방법이 간섭 신호 제거 성능 분석에 효과적으로 활용될 수 있음을 보인다.

An FM radio based PCL system is a passive radar technique for detecting the multiple moving targets from FM radio signals and tracking the trajectories of the targets by calculating the cross-correlation function of direct-path signal and target echo signals. However, the interference signals are received from a surveillance channel, which is designed to receive the target echo signals. Because of this problem, the target echo signals are masked by the strong interference signals and this makes it difficult to detect the true targets from the cross-correlation function. Adaptive filters are known as effective methods for suppressing the interference signals but there is a problem to present their accurate performances in the PCL system because many literatures used the cross-correlation function and the ratio of input and output power as a measure of the performance analysis. In this paper, a performance analysis method is proposed to evaluate the performance of interference cancellation algorithms. By using the property that each component of the filter weight vector is adjusted to suppress the specific interference signal, a performance measure of the interference signal suppression is defined by a function of adaptive filter weights. Based on the proposed method, we compare the performance of the adaptive filters used in the PCL system. Simulation results show that the proposed method can be very effective for evaluating the performance of interference cancellation algorithms.

키워드

참고문헌

  1. Nicholas J. Wills and Hugh D. Griffiths, Advances in Bistatic Radar, SciTech Inc, 2007.
  2. H. D. Griffiths and C. J. Baker, "Passive coherent location radar systems part 1: performance prediction," IEE Proc. RSN, vol. 152, no. 3, pp. 153-159, Jun. 2005.
  3. R. Cardinali, F. Colone, C. Ferreti, and P. Lomboro, "Comparison of Clutter and Multipath Cancellation Techniques for Passive Radar," in IEEE National Radar Conf., pp. 469-474, Apr. 2007.
  4. S. Haykin, Adaptive Filter Theory, Prentice Hall, Upper Saddle River, New Jersey, 4th Ed., 2002.
  5. James E. Palmer and Stephen J. Searle, "Evaluation of adaptive filter algorithms for clutter cancellation in passive bistatic radar," IEEE Radar Conf., pp. 493-498, Atlanta, USA, May 2012.
  6. F. Belfiori, S. Monni, W. van Rossum, and P. Hoogeboom, "Antenna array characterisation and signal processing for an FM radio-based passive coherent location radar system," IET Radar, Sonar and Navig., vol. 6, no. 8, pp. 687-696, 2012. https://doi.org/10.1049/iet-rsn.2011.0401
  7. M. Malanowski and K. Kulpa, "Digital beamforming for passive coherent location radar," IEEE Radar Conf., pp. 1-6, Rome, Italy, May 2008.
  8. T. Tsao, M. Slamini, P. Varshney, D. Weiner, and H. Schwarzlander, "Ambiguity function for a bistatic radar," IEEE Trans. Aero. Electron. Syst., vol. 33, no. 3, pp. 1041-1051, Jul. 1997. https://doi.org/10.1109/7.599331
  9. P. Stinco, M. S. Greco, F. Gini, and M. Rangaswamy, "Ambiguity function and Cramer-Rao bounds for universal mobile telecommunications system-based passive coherent location systems," IET Radar Sonar Navig., vol. 6, no. 7, pp. 668-678, Feb. 2012. https://doi.org/10.1049/iet-rsn.2011.0390
  10. B. Demissie, "Clutter cancellation in passive radar using GSM broadcast channels," IET Radar Sonar & Navig., vol. 8, no. 7, pp. 787-796, Jul. 2014. https://doi.org/10.1049/iet-rsn.2013.0042
  11. G. Gassier, G. Chabriel, J. Barrere, F. Briolle, and C. Jauffret, "A unifying approach for disturbance cancellation and target detection in passive radar using OFDM," IEEE Trans. Signal Process., vol. 64, no. 22, pp. 5959-5971, Nov. 2016. https://doi.org/10.1109/TSP.2016.2600511
  12. J. Dhiman, S. Ahmad, and K. Gulia, "Comparison between adaptive filter algorithms (LMS, NLMS and RLS)," IJSETR, vol. 2, no. 5, pp. 1100-1103, May 2013.