DOI QR코드

DOI QR Code

은 나노 분말과 카본 잉크를 이용한 완전 인쇄형 NFC 태그 설계

Design of a Full-Printed NFC Tag Using Silver Nano-Paste and Carbon Ink

  • Lee, Sang-hwa (Kongju National University Department of Information and Communication Engineering) ;
  • Park, Hyun-ho (IT Application Research Center, Korea Electronics Technology Institute) ;
  • Choi, Eun-ju (IT Application Research Center, Korea Electronics Technology Institute) ;
  • Yoon, Sun-hong (IT Application Research Center, Korea Electronics Technology Institute) ;
  • Hong, Ic-pyo (Kongju National University Department of Information and Communication Engineering)
  • 투고 : 2017.01.07
  • 심사 : 2017.03.24
  • 발행 : 2017.04.30

초록

본 논문에서는 은 나노 분말과 카본 잉크를 이용하여 13.56 MHz에서 동작하는 완전 인쇄형 NFC 태그를 설계 및 제작하였다. 제안된 NFC 태그는 50 pF의 내부 커패시턴스를 갖는 NFC 태그 IC에 적용하기 위해서, $2.74{\mu}H$의 인덕턴스를 갖는 원형 코일을 PI 필름 위에 설계하였으며, 전통적인 회로 제작 방식인 PCB 제조 공정에 비해 대면적 및 대량 생산, 저비용, 친환경공정 등의 장점을 가진 인쇄 전자 기술인 스크린 프린팅 기법을 이용하여 제작하였다. 제안된 구조는 단일 층으로 구현된 원형 코일, 코일 외곽과 중심부 사이에 칩 실장을 위한 점퍼 패턴, 그리고 코일과 점퍼 패턴과의 절연을 위한 절연 패턴으로 구성되어 있으며, 은 나노 분말과 카본 잉크를 이용하여 전도성 패턴과 절연 패턴을 중첩 인쇄하여 구현하였다. 본 논문에서 제안된 NFC 태그의 성능 검증을 위해 인쇄선폭, 두께, 선저항, 밀착력 그리고 환경 신뢰성 평가 등을 수행하였으며, 완전 인쇄형 제작 방식 기반 NFC 태그의 적합성을 확인하였다.

In this paper, a fully printed NFC tag operating at 13.56 MHz was designed and fabricated using silver nano-paste and carbon ink. The proposed NFC tag has a printed coil with an inductance of $2.74{\mu}H$ on a PI film for application to an NFC tag IC with an internal capacitance of 50 pF. Screen printing technology used in this paper has advantages such as large area printing for mass production, low cost and eco-friendly process compared to conventional PCB manufacturing process. The proposed structure consists of a circular coil implemented as a single layer using silver nano-paste and carbon ink, a jumper pattern for chip mounting between the outer edge and the center of the coil, and an insulation pattern between the coil and the jumper pattern. In order to verify the performance of the proposed NFC tag, we performed the measurements of the printing line width, thickness, line resistance, adhesion and environmental reliability, and confirmed the suitability of the NFC tag based on the full-printed manufacturing method.

키워드

참고문헌

  1. M. S. Lee, G. C. Shin, and S. C. Bang, "Trends of near field communication and high speed NFC technology," KICS Inf. and Commun. Mag., vol. 30, no. 12, pp. 51-56, Nov. 2013.
  2. J. Y. Kim and D. H. Won, "Security analysis and improvements of authentication protocol for privacy protection in RFID systems," J. KICS, vol 41, no. 5, pp. 581-591, May 2016. https://doi.org/10.7840/kics.2016.41.5.581
  3. S. M. Hwang and K. H. Lee, "Failure mechanisms analysis of printed electronics type FPCB used in NFC antenna," in Proc. KICS Int. Conf. Commun. 2015, pp. 1198-1199, Jeju Island, Korea, Jun. 2015.
  4. J. Y. Park and J. S. Park, "The present status and future aspects of the market for printed electronics," J. KIICE, vol. 17, no. 2, pp. 263-272, Feb. 2013.
  5. Y. S. Yang, I. K. You, H. K. Yun, S. H. Hong, J. H. Park, M. K. Jang, and J. H. Lee, "Technology trend of printed electronics," ETRI J. Electron. and Telecommun. Trends, vol. 28, no. 5, pp. 1-11, Oct. 2013.
  6. S. S. Cho and I. P. Hong, "Design of paper-based reconfigurable frequency selective surface for spectrum control of indoor environments," J. KICS, vol. 41, no. 7, pp. 775-782, Jul. 2016. https://doi.org/10.7840/kics.2016.41.7.775
  7. T. H. Yun, S. Lee, and S. J. Lim, "Inkjet-printed capacitive touch paper," J. KICS, vol. 40, no. 5, pp. 799-805, May 2015. https://doi.org/10.7840/kics.2015.40.5.799
  8. S. H. Eom and S. J. Lim, "Paper-based pattern switchable antenna using inkjet-printing technology," J. KIEES, vol. 26, no. 7, pp. 613-619, Jul. 2015.
  9. S. H. Nam and Y. C. Chung, "UHF & HF RFID credit card size tag antenna designs using silver-ink and jumper structure," J. KIEES, vol. 27, no. 11, pp. 972-977, Nov. 2016.
  10. B. Shao, Q. Chen, R. Liu, and L. R. Zheng, "Design of fully printable and configurable chipless RFID tag on flexible substrate," Microwave and Optical Technol. Lett., vol. 54, no. 1, pp. 226-230, Jan. 2012. https://doi.org/10.1002/mop.26499
  11. S. J. Lee, S. B. Park, T. H. Jung, D. G. Lim, J. H. Park, Y. H. Kim, and N. S. Mun, "Electrical properties of RFID tag antenna fabricated by Si CMOS process," J. Microelectronics & Packaging Soc., vol. 16, no. 1, pp. 21-25, Mar. 2009.
  12. S. S. Mohan, M. M. Hershenson, S. P. Boyd, and T. H. Lee, "Simple accurate expressions for planar spiral inductances," J. Solid-State Circuits, vol. 34, no. 10, pp. 1419-1424, Oct. 1999. https://doi.org/10.1109/4.792620
  13. S. A. Choi, J. T. Youn, J. S. Mok, and C. W. Koo, "Computer simulation of ink transfer in the different printing speed and ink viscosity in the screen printing," J. Korean Graphic Arts Commun. Soc., vol. 29, no. 1, pp. 75-88, Apr. 2011.
  14. K. S. Choi, H. Lee, H. C. Bae, and Y. S. Oem, "Recent trends of flip chip bonding technology," ETRI J. Electron. and Telecommun. Trends, vol. 28, no. 5, pp. 100-110, Oct. 2013.
  15. C. H. Kim, Y. S. Lee, Y. K. Kim, D. S. Kim, and B. O. Choi, "Characteristics of resonant frequency of printed RFID tag antenna," in Proc. KSME Int. Conf. Commun. 2007, pp. 228-230, Pyeongchang, Korea, Oct. 2007.