DOI QR코드

DOI QR Code

장거리 공중-지상 채널환경에서 대용량 데이터링크의 수신성능 분석방법 연구

Research on Performance Analysis for the Long Distance Air-Ground Wideband Common Data Link

  • Ryu, Young-Jae (The 2nd R&D Institute, Agency for Defense Development, Department of Electric Information Telecommunication Engineering, Chungnam National University) ;
  • Ahn, Jae Min (Department of Electric Information Telecommunication Engineering, Chungnam National University)
  • 투고 : 2017.03.22
  • 심사 : 2017.04.05
  • 발행 : 2017.04.30

초록

본 논문은 장거리 공중-지상 가시선 링크에서 대용량 영상정보용 데이터링크의 무선채널 특성을 분석하고 공중-지상 채널의 협대역 및 광대역 간섭이 대용량 데이터링크의 수신 신호에 미치는 영향을 수학적으로 분석하는 방법을 제안한다. 제안된 성능분석 방법을 이용하여 통신거리에 따른 수신성능을 분석하였고 지면 반사파의 협대역 및 광대역 간섭에 의해 통신거리가 제한됨을 확인하였다. 또한 수신 안테나를 상향으로 제어하는 방법의 성능분석 결과, 협대역뿐만 아니라 광대역 간섭도 효과적으로 제거함으로써 별도의 등화기를 포함하지 않은 기존 대용량 데이터링크 장비로도 통신거리를 증가시킬 수 있음을 확인하였다.

In this paper, we analyze the channel characteristics of the long distance air-ground wideband common data link and we propose a mathematical method to analyze the effect of narrowband and wideband interference of air-ground channel on the received signal of wideband data link. In this paper, we analyze the reception performance according to the communication distance using the proposed performance analysis method, and found out that the communication distance is limited by the narrowband and wideband interference of ground reflection wave. As a result of the performance analysis of the method of controlling the receiving antenna upward, not only the narrow band but also the wideband interference is effectively reduced, so that the communication distance is increased even in the existing wideband data link not including the equalizer.

키워드

참고문헌

  1. J. M. Chung, K. C. Park, T. Y. Won, U. H. Oh, D. C. Ko, S. J. Hong, C. B. Yoon, H. Kim, and U. Y. Pak, "Standardization strategy for the image and intelligence common datalink," J. KICS, vol. 28, no. 4, pp. 41-50, Apr. 2011.
  2. W. P. Kang, J. H. Song, K. H. Lee, D. H. Lee, S. J. Jung, and H. J. Choi, "Standardization strategy for the image and intelligence common datalink," J. KICS, vol. 39C, no. 3, pp. 209-222, Mar. 2014. https://doi.org/10.7840/kics.2014.39C.3.209
  3. S. Baiotti, G. L. Scazzola, G. Battaini, and E. Crovari, "Advances in UAV data links: analysis of requirement evolution and implications on future equipment," Defence Technol. I Center, Apr. 2000.
  4. D. W. Matolak, "Air-Ground channels & models: Comprehensive review and considerations for unmanned aircraft systems," IEEE Aerospace Conf., pp. 1-17, 2012.
  5. D. C. Osterheld "Common Data Link (CDL) Overview," Int. Data Links Symp., Washington DC, Oct. 2007.
  6. Rafael Advanced Defense Systems, LDV-53 MF ISTAR Wideband Data Link [Brochure], Israel: Rafael Advanced Defense Systems.
  7. Textron Systems (2016), Shadow TUAS [Brochure], Maryland: Textron Systems.
  8. Northrop Grumann (TRW/IAI) BQM-155/ RQ-5/MQ-5 Hunter
  9. Israel Aerospace Industries (2014), Searcher Mk III [Brochure], Israel: Israel Aerospace Industries.
  10. Israel Aerospace Industries (2016), Super Heron HF [Brochure], Israel: Israel Aerospace Industries.
  11. D. W. Matolak, "Air-ground channels and models: Comprehensive review and considerations for unmanned aircraft systems," in Proc. IEEE Aerospace Conf., pp. 1-17, Big Sky, MT, Mar. 2012.
  12. H. W. Kim, K. S. Kang, D. I. Chang, and J. Y. Ahn, "Technical and standardization trends on control and non-payload communications for unmanned aircraft systems," Electron. and Telecommun. Trends, vol. 30, no. 3, pp. 74-83, Jun. 2015.
  13. J. A. Kakar, "UAV communications: Spectral requirements, MAV and SUAV channel modeling, OFDM waveform parameters, performance and spectrum management," M. S. Thesis in Electrical Eng., Virginia Polytechnic Inst. and State Univ., May 2015.
  14. M. Rice, A. Davis, and C. Bettweiser, "Wideband channel model for aeronautical telemetry," IEEE Trans. Aerospace and Electron. Syst., vol. 40, no. 1, pp. 57-68, Jan. 2004. https://doi.org/10.1109/TAES.2004.1292142
  15. Y. S. Meng and Y. H. Lee, "Measurements and characterizations of air-to-ground channel over sea surface at C-band with low airborne altitudes," IEEE Trans. Veh. Technol., vol. 60, no. 4, pp. 1943-1948, May 2011. https://doi.org/10.1109/TVT.2011.2136364
  16. D. W. Matolak, "Unmanned aerial vehicles: Communications challenges ans future aerial networking," Int. Conf. Comput., Netw. and Commun. 2015, Garden Grove, CA, Feb. 2015.
  17. T. S. Rappaport, Wireless Communications, Prentice Hall, 1996
  18. D. W. Matolak and R. Sun, "Unmanned aircraft systems: Air-Ground channel characterization for future applications," IEEE Veh. Technol. Mag., vol. 10, no. 2, pp. 79-85, Jun. 2015. https://doi.org/10.1109/MVT.2015.2411191
  19. R. E. Collin, Antennas and radiowave propagation, Mcgraw-Hill, 1985
  20. Propagation data and prediction methods required for the design of terrestrial line-of-sight systems, ITU Recommendation, pp. 530-13, Oct. 2009.
  21. Propagation data and prediction methods required for the design of earth-space telecommunication systems, ITU Recommendation, pp. 618-619, Aug. 2007.
  22. Propagation curves for aeronautical mobile and radio navigation services using the VHF, UHF and SHF bands, ITU Recommendation pp. 528-3, Feb. 2012.
  23. J. Karedal, N. Czink, A. Paier, F. Tufvesson, and A. F. Molisch, "Path loss modelling for vehicle-to-vehicle communications," IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 323-328, Jan. 2011. https://doi.org/10.1109/TVT.2010.2094632
  24. Y. J. Ryu and J. M. Ahn, "Optimum elevation angle control of the Receiving antenna for the long distance air-ground common data link," J. KICS, vol. 41, no. 11, pp. 1528-1538, Nov. 2016. https://doi.org/10.7840/kics.2016.41.11.1528
  25. S. K. Park, H. C. Chung, and S. S Na, "Intersymbol Interference due to mismatche roll-off factors and sampling jitter over a Gaussian channel," IEEE Electronic Lett., vol 33, no. 24, pp. 2016-2017, Nov. 1997. https://doi.org/10.1049/el:19971191
  26. J. G. Proakis, Communication systems engineering, Prentice Hall, 2nd Ed., 2002.