DOI QR코드

DOI QR Code

Directing the turning behavior of carp using virtual stimulation

  • Kim, Cheol-Hu (Department of Mechanical Engineering Korea Advanced Institute of Science and Technology) ;
  • Kim, Dae-Gun (Department of Mechanical Engineering Korea Advanced Institute of Science and Technology) ;
  • Kim, Daesoo (Department of Biological Sciences Korea Advanced Institute of Science and Technology) ;
  • Lee, Phill-Seung (Department of Mechanical Engineering Korea Advanced Institute of Science and Technology)
  • 투고 : 2016.12.07
  • 심사 : 2017.02.14
  • 발행 : 2017.03.25

초록

Fishes detect various sensory stimuli, which may be used to direct their behavior. Especially, the visual and water flow detection information are critical for locating prey, predators, and school formation. In this study, we examined the specific role of these two different type of stimulation (vision and vibration) during the obstacle avoidance behavior of carp, Cyprinus carpio. When a visual obstacle was presented, the carp efficiently turned and swam away in the opposite direction. In contrast, vibration stimulation of the left or right side with a vibrator did not induce strong turning behavior. The vibrator only regulated the direction of turning when presented in combination with the visual obstacle. Our results provide first evidence on the innate capacity that dynamically coordinates visual and vibration signals in fish and give insights on the novel modulation method of fish behavior without training.

키워드

과제정보

연구 과제 주관 기관 : Ministry of Public Safety and Security, Samsung Science & Technology

참고문헌

  1. Alcock, J. (1993), Animal behavior: An evolutionary approach, Apple Academic Press.
  2. Arbib, M.A. and Hanson, A.R. (1990), "Vision, brain, and cooperative computation", Mit Press, 129-163
  3. Bisazza, A., Cantalupo, C. and Vallortidara, G. (1997), "Lateral asymmetries during escape behavior in a species of teleost fish (Jenynsia lineata)", Physiology Behavior, 61(1), 31-35. https://doi.org/10.1016/S0031-9384(96)00308-3
  4. Blaxter, H.S. and Fuiman, L.A. (1989), Function of the free neuromasts of marine teleost larvae. In The Mechanosensory Lateral Line: Neurobiology and Evolution (ed. S. Coombs, P. Gorner and H. Munz), Springer, New York, NY, USA.
  5. Britt, W.R., Miller, J., Waggoner, P., Bevly, D.M. and Hamilton, J.A. (2011), "An embedded system for real-time navigation and remote command of a trained canine", Person. Ubiquitous Comput., 15(1), 61-74. https://doi.org/10.1007/s00779-010-0298-4
  6. Conley, R.A. and Coombs, S. (1998), "Dipole source localization by mottled sculpin. III. Orientation after site-specific, unilateral denervation of the lateral line system", J. Comparative Physiol., 183(3), 335-344. https://doi.org/10.1007/s003590050260
  7. Coombs, S., Braun, C.B. and Donovan, B. (2001), "The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts", J. Experiment. Biol., 204(2), 337-348.
  8. Coombs, S., Gorner, P. and Munz, H. (1989), The Mechanosensory Lateral Line: Neurobiology and Evolution, Springer-Verlag, New York, NY, USA.
  9. Daly, D.C., Mercier, P.P., Bhardwaj, M., Stone, A.L., Aldworth, Z.N., Daniel, T.L., Voldman, J., Hildebrand, J.G. and Chandrakasan, A.P. (2010), "A pulsed UWB receiver SoC for insect motion control", Solid-State Circuits IEEE J., 45(1), 153-166. https://doi.org/10.1109/JSSC.2009.2034433
  10. Dijkgraaf, S. (1963), "The functioning and significance of the lateral-line organs", Biol. Rev. Cambridge Philosoph. Soc., 38(1), 51-105. https://doi.org/10.1111/j.1469-185X.1963.tb00654.x
  11. Douglas, R.H., Bowmaker, J.K. and Kunz-Ramsay, Y.W. (1989), Ultraviolet vision in fish. In Seeing Contour and Colour (ed. J. J. Kulikowski, C. M. Dickinson and I. J. Murray), Pergamon Press, Oxford, United Kingdom.
  12. Engelmann, J., Hanke, W., Mogdans, J. and Bleckmann, H. (2000), "Hydrodynamic stimuli and the fish lateral line", Nature, 408(6808), 51-52. https://doi.org/10.1038/35040706
  13. Errigo, M., McGuiness, C., Meadors, S., Mittmann, B., Dodge, F. and Barlow, R. (2001), "Visually guided behavior of juvenile horseshoe crabs", Biol. Bull., 201(2), 271-272. https://doi.org/10.2307/1543360
  14. Evelyn, Shaw (1978), "Schooling Fishes: The school, a truly egalitarian form of organization in which all members of the group are alike in influence, offers substantial benefits to its participants", Am. Scientist, 66(2), 166-175
  15. Fernald, R.D. and Wright, S.E. (1985), "Growth of the visual system in the African cichlid fish (Haplochromis burtoni)", Vis. Res., 25(2), 163-170. https://doi.org/10.1016/0042-6989(85)90109-9
  16. Gardiner, J.M. and Atema, J. (2007), "Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis", J. Exp. Biol., 210(11), 1925-1934. https://doi.org/10.1242/jeb.000075
  17. Gardiner, J.M. and Atema, J. (2010), "The function of bilateral odor arrival time differences in olfactory orientation of sharks", Curr. Biol., 20(13), 1187-1191. https://doi.org/10.1016/j.cub.2010.04.053
  18. Griffin, D.R. (2001), "Return to the magic well: echolocation behavior of bats and responses of insect prey", BioScience, 51(7), 555-556. https://doi.org/10.1641/0006-3568(2001)051[0555:RTTMWE]2.0.CO;2
  19. Hobson, E.S., McFarland, W.N. and Chess, J.R. (1981), "Crepuscular and nocturnal activities of Californian nearshore fishes, with consideration of their scotopic visual pigments and the photic environment", Fish. Bull., 79(1), 1-30.
  20. Hodgson, E.S. and Mathewson, R.F. (1971), "Chemosensory orientation in sharks", Ann. NY. Academy Sci., 188(1), 175-182. https://doi.org/10.1111/j.1749-6632.1971.tb13096.x
  21. Janssen, J. and Corcoran, J. (1993), "Lateral line stimuli can override vision to determine sunfish strike trajectory", J. Exp. Biol., 176(1), 299-305.
  22. Kanter, M.J. and Coombs, S. (2002), "Rheotaxis and prey detection in uniform currents by Lake Michigan mottled sculpin (Cottus bairdi)", J. Exp. Biol., 206(1), 59-70. https://doi.org/10.1242/jeb.00056
  23. Kashin, S.M., Feldman, A.G. and Orlovsky, G.N. (1974), "Locomotion of fish evoked by electrical stimulation of the brain", Brain Res., 82(1), 41-47. https://doi.org/10.1016/0006-8993(74)90891-9
  24. Kim, D.G., Lee, S., Kim, C.H., Jo, S. and Lee, P.S. (2017), "Parasitic robot system for Turtle's waypoint navigation", J. Bionic Eng., In Press.
  25. Kobayashi, N., Yoshida, M., Matsumoto, N. and Uematsu, K. (2009), "Artificial control of swimming in goldfish by brain stimulation: confirmation of the midbrain nuclei as the swimming center", Neurosci. Lett., 452(1), 42-46. https://doi.org/10.1016/j.neulet.2009.01.035
  26. Krause, J., Winfield, A.F.T. and Deneubourg, J. (2011), "Interactive robots in experimental biology", Trend. Ecol. Evolut., 26(7), 369-375. https://doi.org/10.1016/j.tree.2011.03.015
  27. Lee, S., Kim, C.H., Kim, D.G., Kim, H.G., Lee, P.S. and Myung, H. (2013), "Remote guidance of untrained turtles by controlling voluntary instinct behavior", PLoS ONE, 8(4), e61798. doi:10.1371/journal.pone.0061798
  28. Liao, J.C. (2006), "The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow", J. Exp. Biol., 209(20), 4077-4090. https://doi.org/10.1242/jeb.02487
  29. Migita, M., Mizukami, E. and Gunji, Y.P. (2005), "Flexibility in starfish behavior by multi-layered mechanism of self-organization", Biosyst., 82(2), 107-115. https://doi.org/10.1016/j.biosystems.2005.05.012
  30. Montgomery, J. and Coombs, S. (1998), "Peripheral encoding of moving sources by the lateral line system of a sit-and-wait predator", J. Exp. Biol., 201(1), 91-102.
  31. Montgomery, J.C., McDonald, F., Baker, C.F., Carton, A.G. and Ling, N. (2003), "Sensory integration in the hydrodynamic world of rainbow trout", Proc. Roy. Soc. B, 270, S195-S197. https://doi.org/10.1098/rsbl.2003.0052
  32. Montgomery, J., Baker, C. and Carton, A. (1997), "The lateral line can mediate rheotaxis in fish", Nature, 389(6654), 960-963. https://doi.org/10.1038/40135
  33. Parkyn, D.C., Austin, J.D. and Hawryshyn, C.W. (2003), "Acquisition of polarized-light orientation in salmonids under laboratory conditions", Animal Behav., 65(5), 893-904. https://doi.org/10.1006/anbe.2003.2136
  34. Partridge, B.L. and Pitcher, T.J. (1980), "The sensory basis of fish schools: relative roles of the lateral line and vision", J. Comparat. Phys., 135(4), 315-325. https://doi.org/10.1007/BF00657647
  35. Pitcher, T.J., Partridge, B.L. and Wardle, C.S. (1976), "A blind fish can school", Science, 194(4268), 963-965. https://doi.org/10.1126/science.982056
  36. Popper, A.N. and Carlson, T.J. (1998), "Application of sound and other stimuli to control fish behavior", Trans. Am. Fish. Soc., 127(5), 673-707. https://doi.org/10.1577/1548-8659(1998)127<0673:AOSAOS>2.0.CO;2
  37. Popper, A.N., Plachta, D.T.T., Mann, D.A. and Higgs, D. (2004), "Response of clupeid fish to ultrasound: a review", ICES J. Marine Sci., 61(7), 1057-1061. https://doi.org/10.1016/j.icesjms.2004.06.005
  38. Robertson, R.M. and Johnson, A.G. (1993), "Collision avoidance of flying locusts: steering torques and behavior", J. Exp. Biol., 183(1), 35-60.
  39. Robie, A.A., Straw, A.D. and Dickinson, M.H. (2010), "Object preference by walking fruit flies, Drosophila melanogaster, is mediated by vision and graviperception", J. Exp. Biol., 213(14), 2494-2506. https://doi.org/10.1242/jeb.041749
  40. Roeser, T. and Baier, H. (2003), "Visuomotor behaviors in larval zebrafish after GFP-guided laser ablation of the optic tectum", J. Neurosci., 23(9), 3726-3734. https://doi.org/10.1523/JNEUROSCI.23-09-03726.2003
  41. Sanchez, C.J., Chiu, C.W., Zhou, Y., Gonzalez, J.M., Vinson, S.B. and Liang, H. (2015), "Locomotion control of hybrid cockroach robots", J. Roy. Soc. Interf., 12(105), 20141363. https://doi.org/10.1098/rsif.2014.1363
  42. Schindler, I., Rice, N.J., McIntosh, R.D., Rossetti, Y., Vighetto, A. and Milner, A.D. (2004) "Automatic avoidance of obstacles is a dorsal stream function: evidence from optic ataxia", Nature Neurosci., 7(7), 779-784. https://doi.org/10.1038/nn1273
  43. Shaw, E. (1978), "Schooling Fishes: The school, a truly egalitarian form of organization in which all members of the group are alike in influence, offers substantial benefits to its participants", Am. Scientist, 66(2), 166-175.
  44. Spierts, I.L. and Leeuwen, V.J. (1999), "Kinematics and muscle dynamics of C-and S-starts of carp (Cyprinus carpio L.)", J. Exp. Biol., 202(4), 393-406.
  45. Sun, C., Zheng, N.G., Zhang, X.L., Chen, W.D. and Zheng, X.X. (2013), "Automatic navigation for ratrobots with modeling of the human guidance", J. Bionic Eng., 10(1), 46-56. https://doi.org/10.1016/S1672-6529(13)60198-5
  46. Sutterlin, A.M. and Waddy, S. (1975), "Possible role of the posterior lateral line in obstacle entrainment by brook trout (Salvelinus fontinalis)", J. Fish. Res. Board Can., 32(12), 2441-2446. https://doi.org/10.1139/f75-281
  47. Talwar, S.K., Xu, S., Hawley, E.S., Weiss, S.A., Moxon, K.A. and Chapin, J.K. (2002), "Rat navigation guided by remote control", Nature, 417(6884), 37-38. https://doi.org/10.1038/417037a
  48. Tinbergen, N. (1951), The study of instinct, Oxford University.
  49. Tsang, W.M., Stone, A., Aldworth, Z., Otten, D., Akinwande, A.I., Daniel, T., Hildebrand, J.G., Levine, R. B. and Voldman, J. (2010), "Remote control of a cyborg moth using carbon nanotube-enhanced flexible neuroprosthetic probe. In: Micro Electro Mechanical Systems (MEMS)", 2010 IEEE 23rd International Conference on, 39-42.